Himalayan magnesite records abrupt cyanobacterial growth that plausibly triggered the Neoproterozoic Oxygenation Event

[1]  Subhojit Saha,et al.  Provenance and sedimentation age of the Proterozoic clastic succession of the Garhwal‐Kumaon Lesser Himalaya, NW‐India: Clues from U–Pb zircon and Sr–Nd isotopes , 2022, Geological Journal.

[2]  T. Hokada,et al.  Comparison between Raman spectra of carbonaceous material and carbon isotope thermometries in low-medium grade meta-carbonates: Implications for estimation of metamorphic temperature condition , 2022, Precambrian Research.

[3]  J. Bernal,et al.  Rare Earth Elements and Yttrium (REE+Y) patterns in recent Anadara brasiliana shells from Playa Norte, Barra de Cazones (Veracruz, Mexico): Evidence of anthropogenic contamination linked to river output? , 2021 .

[4]  B. Windley,et al.  A geochemical and isotopic perspective on tectonic setting and depositional environment of Precambrian meta-carbonate rocks in collisional orogenic belts , 2021 .

[5]  S. Varnavas,et al.  Submarine hydrothermal mineralization processes and insular mineralization in the Hellenic Volcanic Arc system: A review , 2020 .

[6]  B. Jones,et al.  Rare earth elements in dolostones and limestones from the Mesoproterozoic Gaoyuzhuang Formation, North China: Implications for penecontemporaneous dolomitization , 2020 .

[7]  Priya Bajaj,et al.  Evolution and spread of SARS-CoV-2 likely to be affected by climate , 2020, Climate Change Ecology.

[8]  A. T. Mursito,et al.  The Characteristics of Padamarang Magnesite under Calcination and Hydrothermal Treatment , 2019 .

[9]  S. Poulton,et al.  Stepwise Earth oxygenation is an inherent property of global biogeochemical cycling , 2019, Science.

[10]  P. Mukherjee,et al.  U-Pb zircon ages and Sm-Nd isotopic characteristics of the Lesser and Great Himalayan sequences, Uttarakhand Himalaya, and their regional tectonic implications , 2019, Gondwana Research.

[11]  W. Peck,et al.  The Kilmar Magnesite Deposits: Evaporitic Metasediments in the Grenville Supergroup, Morin Terrane, Quebec , 2019, Minerals.

[12]  P. Quay,et al.  An international intercomparison of stable carbon isotope composition measurements of dissolved inorganic carbon in seawater , 2019, Limnology and Oceanography: Methods.

[13]  Chuan-Lin Zhang,et al.  Timing of subduction initiation in the Proto-Tethys Ocean: Evidence from the Cambrian gabbros from the NE Pamir Plateau , 2018, Lithos.

[14]  H. Mali,et al.  Genesis of giant Early Proterozoic magnesite and related talc deposits in the Mafeng area, Liaoning Province, NE China , 2018, Journal of Asian Earth Sciences.

[15]  S. Gunasekaran,et al.  The FTIR Spectra of Raw Magnesite and Sintered Magnesite , 2018, International Journal of Trend in Scientific Research and Development.

[16]  J. Justo,et al.  Stability of calcium and magnesium carbonates at Earth's lower mantle thermodynamic conditions , 2018, Earth and Planetary Science Letters.

[17]  O. Büyüköztürk,et al.  Use of silica fume and natural volcanic ash as a replacement to Portland cement: Micro and pore structural investigation using NMR, XRD, FTIR and X-ray microtomography , 2018 .

[18]  D. Abbot,et al.  Persistence of a freshwater surface ocean after a snowball Earth , 2017 .

[19]  Christopher P. Reed,et al.  Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants , 2017 .

[20]  I. Halevy,et al.  The geologic history of seawater pH , 2017, Science.

[21]  R. Summons,et al.  Rapid oxygenation of Earth’s atmosphere 2.33 billion years ago , 2016, Science Advances.

[22]  P. Sánchez‐Baracaldo Origin of marine planktonic cyanobacteria , 2015, Scientific Reports.

[23]  F. Ebner,et al.  Mineralogical, geochemical, fluid inclusion and isotope study of Hohentauern/Sunk sparry magnesite deposit (Eastern Alps/Austria): implications for a metasomatic genetic model , 2015, Mineralogy and Petrology.

[24]  A. Niedermayr,et al.  Sm-Nd dating of hydrothermal carbonate formation: An example from the Breitenau magnesite deposit (Styria, Austria) , 2014 .

[25]  C. German,et al.  Composition of hydrothermal fluids and mineralogy of associated chimney material on the East Scotia Ridge back-arc spreading centre , 2014 .

[26]  M. Santosh,et al.  C–O isotope geochemistry of the Dashiqiao magnesite belt, North China Craton: implications for the Great Oxidation Event and ore genesis , 2013 .

[27]  Claudio L. Donnici,et al.  Analysis of seized cocaine samples by using chemometric methods and FTIR spectroscopy , 2013 .

[28]  A. Anbar,et al.  Ocean oxygenation in the wake of the Marinoan glaciation , 2012, Nature.

[29]  M. Herrero,et al.  Petrography and geochemistry of the magnesites and dolostones of the Ediacaran Ibor Group (635 to 542 Ma), Western Spain: Evidences of their hydrothermal origin , 2011 .

[30]  Raymond T. Pierrehumbert,et al.  Climate of the Neoproterozoic , 2011 .

[31]  A. Gärtner,et al.  The India and South China cratons at the margin of Rodinia — Synchronous Neoproterozoic magmatism revealed by LA-ICP-MS zircon analyses , 2011 .

[32]  A. Strasser,et al.  Carbon- and oxygen-isotope records of palaeoenvironmental and carbonate production changes in shallow-marine carbonates (Kimmeridgian, Swiss Jura) , 2010, Geological Magazine.

[33]  Albert Genter,et al.  Fractures, hydrothermal alterations and permeability in the Soultz Enhanced Geothermal System , 2010 .

[34]  M. Kennedy,et al.  The late Precambrian greening of the Earth , 2009, Nature.

[35]  M. Tiwari,et al.  Microfossils from the Neoproterozoic Gangolihat Formation, Kumaun Lesser Himalaya: Their stratigraphic and evolutionary significance , 2009 .

[36]  W. Altermann The Evolution of Life and its Impact on Sedimentation , 2009 .

[37]  R. Bodnar,et al.  Special Paper: The Composition of Magmatic-Hydrothermal Fluids in Barren and Mineralized Intrusions , 2008 .

[38]  I. Fairchild,et al.  Neoproterozoic glaciation in the Earth System , 2007, Journal of the Geological Society.

[39]  A. Sial,et al.  Neoproterozoic-Early Cambrian isotopic variation and chemostratigraphy of the Lesser Himalaya, India, Eastern Gondwana , 2007 .

[40]  D. Canfield,et al.  Late-Neoproterozoic Deep-Ocean Oxygenation and the Rise of Animal Life , 2007, Science.

[41]  Robert A. Berner,et al.  GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2 , 2006 .

[42]  M. Holness How Melted Rock Migrates , 2006, Science.

[43]  M. Stamatakis,et al.  Origin of the Rubian carbonate-hosted magnesite deposit, Galicia, NW Spain: mineralogical, REE, fluid inclusion and isotope evidence , 2006 .

[44]  Rajesh Sharma Nature of fluids and regional implications for Lesser Himalayan carbonates and associated mineralization , 2006 .

[45]  C. McKay,et al.  Why O2 is required by complex life on habitable planets and the concept of planetary "oxygenation time". , 2005, Astrobiology.

[46]  D. Canfield THE EARLY HISTORY OF ATMOSPHERIC OXYGEN: Homage to Robert M. Garrels , 2005 .

[47]  A. Mackay,et al.  Late glacial and Holocene environmental change in the Lake Baikal region documented by oxygen isotopes from diatom silica , 2005 .

[48]  M. Joachimski,et al.  Oxygen isotope evolution of biogenic calcite and apatite during the Middle and Late Devonian , 2004 .

[49]  A. Sial,et al.  Geology and geochemistry of paleoproterozoic magnesite deposits (∼1.8Ga), State of Ceará, Northeastern Brazil , 2004, Carbonates and Evaporites.

[50]  C. Lécuyer,et al.  Deciphering kinetic, metabolic and environmental controls on stable isotope fractionations between seawater and the shell of Terebratalia transversa (Brachiopoda) , 2003 .

[51]  Jennifer M. Robinson,et al.  PHANEROZOIC ATMOSPHERIC OXYGEN , 2003 .

[52]  G. Glasby,et al.  Submarine hydrothermal mineralization in the Okinawa Trough, SW of Japan: an overview , 2003 .

[53]  W. Altermann,et al.  Neoarchean Biomineralization by Benthic Cyanobacteria , 2002, Science.

[54]  P. Medvedev,et al.  Palaeoproterozoic magnesite: lithological and isotopic evidence for playa/sabkha environments , 2001 .

[55]  S. Lugli Timing of post-depositional events in the Burano Formation of the Secchia valley (Upper Triassic, Northern Apennines), clues from gypsum–anhydrite transitions and carbonate metasomatism , 2001 .

[56]  J. Kirschvink,et al.  Paleoproterozoic snowball earth: extreme climatic and geochemical global change and its biological consequences. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Margaret K. Tivey,et al.  Hydrothermal vents near a mantle hot spot: the Lucky Strike vent field at 37°N on the Mid-Atlantic Ridge , 1997 .

[58]  S. Burns,et al.  Magnesite diagenesis in redbeds: a case study from the Permian of the Northern Calcareous Alps (Tyrol, Austria) , 1994 .

[59]  Olav Walderhaug,et al.  Precipitation Rates for Quartz Cement in Sandstones Determined by Fluid-Inclusion Microthermometry and Temperature-History Modeling , 1994 .

[60]  J. Reitner,et al.  Microbial carbonate crusts-a key to the environmental analysis of fossil spongiolites? , 1993 .

[61]  R. Bodnar Revised equation and table for determining the freezing point depression of H2O-Nacl solutions , 1993 .

[62]  D. Schelling The tectonostratigraphy and structure of the eastern Nepal Himalaya , 1992 .

[63]  E. Sholkovitz,et al.  The Geochemistry of Rare Earth Elements in the Seasonally Anoxic Water Column and Porewaters of Chesapeake Bay , 1992 .

[64]  E. Morris,et al.  The preparation of double-polished fluid inclusion wafers from friable, water-sensitive material , 1992, Mineralogical Magazine.

[65]  P. Aharon A stable-isotope study of magnesites from the Rum Jungle Uranium Field, Australia: Implications for the origin of strata-bound massive magnesites , 1988 .

[66]  Yigang Zhang,et al.  Determination of the homogenization temperatures and densities of supercritical fluids in the system NaClKClCaCl2H2O using synthetic fluid inclusions , 1987 .

[67]  M. Schidlowski,et al.  Genesis of upper proterozoic-cambrian phosphorite deposits of India: isotopic inferences from carbonate fluorapatite, carbonate and organic carbon , 1986 .

[68]  M. Stiller,et al.  Extreme carbon-isotope enrichments in evaporating brines , 1985, Nature.

[69]  P. K. Raha,et al.  Stromatolites and Precambrian stratigraphy in India , 1982 .

[70]  G. A. Wandless,et al.  Rare earth element distribution in some hydrothermal minerals: evidence for crystallographic control , 1980 .

[71]  J. Hoefs,et al.  Die Isotopenzusammensetzung der Karbonate in der Magnesitlagerstätte Eugui (Westpyrenäen) , 1978 .

[72]  S. Stanley,et al.  AN EXPLANATION FOR COPE'S RULE , 1973, Evolution; international journal of organic evolution.

[73]  D. Friedman,et al.  Infrared Characteristics of Ocean Water (1.5-15 micro). , 1969, Applied optics.

[74]  K. Valdiya Origin of the magnesite deposits of southern Pithoragarh, Kumaun Himalaya, India , 1968 .

[75]  R. M. Lloyd Oxygen isotope enrichment of sea water by evaporation , 1966 .

[76]  A. A. Akhrem,et al.  Raman-spectrum investigation of some acetylenic alcohols and their acetic esters , 1960 .

[77]  J. R. Nursall,et al.  Oxygen as a Prerequisite to the Origin of the Metazoa , 1959, Nature.

[78]  Sandeep Singh Protracted zircon growth in migmatites and In situ melt of Higher Himalayan Crystallines: U–Pb ages from Bhagirathi valley, NW Himalaya, India , 2019, Geoscience Frontiers.

[79]  G. Shields-Zhou,et al.  The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling , 2012 .

[80]  P. Allen,et al.  Chapter 31 The Blaini Formation of the Lesser Himalaya, NW India , 2011 .

[81]  V. Ciolac,et al.  Georeferencing of topographical maps using the software arcgis. , 2010 .

[82]  A. Jain,et al.  SHRIMP U-Pb c. 1860 Ma anorogenic magmatic signatures from the NW Himalaya: implications for Palaeoproterozoic assembly of the Columbia Supercontinent , 2009 .

[83]  V. Tewari The rise and decline of the Ediacaran biota: palaeobiological and stable isotopic evidence from the NW and NE Lesser Himalaya, India , 2007 .

[84]  M. Tiwari,et al.  Neoproterozoic Sponge Spicules and Organic Walled Microfossils from the Gangolihat Dolomite, Lesser Himalaya, India , 2000 .

[85]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[86]  J. Martin,et al.  The Significance of the River Input of Chemical Elements to the Ocean , 1983 .

[87]  O. Schulz,et al.  Sedimentary Magnesite Fabrics Within the Sparry Magnesite Deposit Hochfilzen (Tyrol) , 1977 .