Real zeros of 2F1 hypergeometric polynomials

We use a method based on the division algorithm to determine all the values of the real parameters b and c for which the hypergeometric polynomials "2F"1(-n,b;c;z) have n real, simple zeros. Furthermore, we use the quasi-orthogonality of Jacobi polynomials to determine the intervals on the real line where the zeros are located.

[1]  Frits Beukers,et al.  SPECIAL FUNCTIONS (Encyclopedia of Mathematics and its Applications 71) , 2001 .

[2]  Leon M. Hall,et al.  Special Functions , 1998 .

[3]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[4]  A. Martínez-Finkelshtein,et al.  Strong asymptotics for Jacobi polynomials with varying nonstandard parameters , 2003 .

[5]  Quasi-orthogonality and zeros of some 3 F 2 hypergeometric polynomials , 2004 .

[6]  Leon D. Segal,et al.  Functions , 1995 .

[7]  Hari M. Srivastava,et al.  Asymptotic distributions of the zeros of certain classes of hypergeometric functions and polynomials , 2011, Math. Comput..

[8]  K Driver,et al.  Convergence of ray sequences of Padé approximants for 2 f 1(a, 1; c; z), (c > a > 0) , 2002 .

[9]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[10]  Andrei Martínez-Finkelshtein,et al.  ZEROS OF JACOBI POLYNOMIALS WITH VARYING NON-CLASSICAL PARAMETERS , 2000 .

[11]  C. Brezinski,et al.  Quasi-orthogonality with applications to some families of classical orthogonal polynomials , 2004 .

[12]  Kathy Driver,et al.  Quadratic and cubic transformations and zeros of hypergeometric polynomials , 2002 .

[13]  A. Draux On quasi-orthogonal polynomials , 1990 .

[14]  Kathy Driver,et al.  Polynomial solutions of differential-difference equations , 2009, J. Approx. Theory.

[15]  A.B.J. Kuijlaars,et al.  Orthogonality of Jacobi polynomials with general parameters , 2003 .

[16]  H. Joulak A contribution to quasi-orthogonal polynomials and associated polynomials , 2005 .

[17]  Kathy Driver,et al.  Asymptotic zero distribution of hypergeometric polynomials , 2004, Numerical Algorithms.

[18]  Q. I. Rahman,et al.  Analytic theory of polynomials , 2002 .

[19]  A. Hurwitz Ueber die Nullstellen der hypergeometrischen Reihe , 1891 .

[20]  Peter L. Duren,et al.  Asymptotic Properties of Zeros of Hypergeometric Polynomials , 2001, J. Approx. Theory.

[21]  J. Mason,et al.  Algorithms for approximation , 1987 .

[22]  F. Klein Ueber die Nullstellen der hypergeometrischen Reihe , 1890 .

[23]  Asymptotic zero distribution of a class of hypergeometric polynomials , 2007, 1107.2236.

[24]  Kathy Driver,et al.  Trajectories of the zeros of hypergeometric polynomials F(−n, b; 2b; z) for b < − 1/2 , 2001 .

[25]  Ramón A. Orive Rodríguez,et al.  Riemann-Hilbert analysis for Jacobi polynomials orthogonal on a single contour , 2005, J. Approx. Theory.

[26]  Kathy Driver,et al.  Zeros of ultraspherical polynomials and the Hilbert-Klein formulas , 2001 .

[27]  Kathy Driver,et al.  Zeros of the hypergeometric polynomials F(−n, b; 2b; z) , 2000 .

[28]  Gerhard Schmeisser A Real Symmetric Tridiagonal Matrix With a Given Characteristic Polynomial , 1993 .

[29]  E. G. Goodaire,et al.  Moufang Unit Loops Torsion Over Their Centres , 2002 .

[30]  K. Driver,et al.  Zeros of the Hypergeometric Polynomial F(-n, b; c; z) , 2001, 0812.0708.

[31]  Kathy Driver,et al.  Zeros of the Hypergeometric Polynomials F(-n, b; -2n; z) , 2001, J. Approx. Theory.

[32]  Contiguous relations of hypergeometric series , 2001, math/0109222.