Terrigenous dissolved organic matter input and nutrient-light-limited conditions on the winter microbial food web of the Beagle Channel

[1]  Jacobo Martín,et al.  Higher biotic than abiotic natural variability of the plankton ecosystem revealed by a time series along a subantarctic transect , 2022, Journal of Marine Systems.

[2]  Jacobo Martín,et al.  Spatial distribution of Munida gregaria (Decapoda, Munididae) larvae in the silled Beagle Channel: Insights from spring and autumn surveys , 2022, Journal of Marine Systems.

[3]  Jacobo Martín,et al.  Water Circulation and Transport Time Scales in the Beagle Channel, Southernmost Tip of South America , 2022, Journal of Marine Science and Engineering.

[4]  Shuai Wang,et al.  A Synthesis of Viral Contribution to Marine Nitrogen Cycling , 2022, Frontiers in Microbiology.

[5]  G. Bratbak,et al.  How Microbial Food Web Interactions Shape the Arctic Ocean Bacterial Community Revealed by Size Fractionation Experiments , 2021, Microorganisms.

[6]  A. Martiny,et al.  Diverse but uncertain responses of picophytoplankton lineages to future climate change , 2021, Limnology and Oceanography.

[7]  F. Bourrin,et al.  General Hydrography of the Beagle Channel, a Subantarctic Interoceanic Passage at the Southern Tip of South America , 2021, Frontiers in Marine Science.

[8]  A. Martiny,et al.  Prochlorococcus, Synechococcus, and picoeukaryotic phytoplankton abundances in the global ocean , 2021, Limnology and Oceanography Letters.

[9]  Viviana A. Alder,et al.  Temporal variability of the physical and chemical environment, chlorophyll and diatom biomass in the euphotic zone of the Beagle Channel (Argentina): Evidence of nutrient limitation , 2021, Progress in Oceanography.

[10]  E. Boss,et al.  Phytoplankton community structuring and succession in a competition-neutral resource landscape , 2021, ISME Communications.

[11]  J. Marcovecchio,et al.  Integrated biomarker response in Mytilus chilensis exposed to untreated urban discharges along the coast of Ushuaia Bay (Beagle Channel, Argentina) , 2021, Environmental Science and Pollution Research.

[12]  J. Brandsma,et al.  Shift from Carbon Flow through the Microbial Loop to the Viral Shunt in Coastal Antarctic Waters during Austral Summer , 2021, Microorganisms.

[13]  A. Raya Rey,et al.  Trophic structure of southern marine ecosystems: a comparative isotopic analysis from the Beagle Channel to the oceanic Burdwood Bank area under a wasp-waist assumption , 2020 .

[14]  P. Peduzzi,et al.  Aquatic Viruses and Climate Change. , 2020, Current issues in molecular biology.

[15]  F. Capitanio,et al.  Mesozooplankton succession in a sub-Antarctic bay (Beagle channel, Southern tip of South America): distinctive annual patterns between two environmentally different zones , 2020, Polar Biology.

[16]  Hongyue Dang Grand Challenges in Microbe-Driven Marine Carbon Cycling Research , 2020, Frontiers in Microbiology.

[17]  F. Bourrin,et al.  Particle Dynamics in Ushuaia Bay (Tierra del Fuego)-Potential Effect on Dissolved Oxygen Depletion , 2020, Water.

[18]  J. Carstensen,et al.  Distinct Coastal Microbiome Populations Associated With Autochthonous- and Allochthonous-Like Dissolved Organic Matter , 2019, Front. Microbiol..

[19]  N. Lundholm,et al.  Harmful phytoplankton in the Beagle Channel (South America) as a potential threat to aquaculture activities. , 2019, Marine pollution bulletin.

[20]  Estelle P. Bruni,et al.  Microbial food webs in hypertrophic fishponds: Omnivorous ciliate taxa are major protistan bacterivores , 2019, Limnology and Oceanography.

[21]  B. Krock,et al.  Linking optical and chemical signatures of dissolved organic matter in the southern Argentine shelf: Distribution and bioavailability , 2019, Journal of Marine Systems.

[22]  F. Capitanio,et al.  Spatio-temporal dynamics of mesozooplankton in the subantarctic Beagle Channel: The case of Ushuaia Bay (Argentina) , 2019, Regional Studies in Marine Science.

[23]  N. Silva,et al.  Interplay between freshwater discharge and oceanic waters modulates phytoplankton size-structure in fjords and channel systems of the Chilean Patagonia , 2019, Progress in Oceanography.

[24]  N. Silva,et al.  Organic matter distribution, composition and its possible fate in the Chilean North-Patagonian estuarine system. , 2019, The Science of the total environment.

[25]  M. Díez,et al.  Winter is cool: spatio-temporal patterns of the squat lobster Munida gregaria and the Fuegian sprat Sprattus fuegensis in a sub-Antarctic estuarine environment , 2018, Polar Biology.

[26]  F. Azam,et al.  Evolving paradigms in biological carbon cycling in the ocean , 2018, National Science Review.

[27]  J. Cloern Why large cells dominate estuarine phytoplankton , 2018 .

[28]  B. Krock,et al.  Factors influencing the characteristics and distribution or surface organic matter in the Pacific-Atlantic connection , 2017 .

[29]  P. Harrison,et al.  Spatiotemporal Variability in Phosphorus Species in the Pearl River Estuary: Influence of the River Discharge , 2017, Scientific Reports.

[30]  P. Yager,et al.  Microbial Community Response to Terrestrially Derived Dissolved Organic Matter in the Coastal Arctic , 2017, Front. Microbiol..

[31]  J. Qi,et al.  Processes of coastal ecosystem carbon sequestration and approaches for increasing carbon sink , 2017, Science China Earth Sciences.

[32]  L. Riemann,et al.  The Effect of Increased Loads of Dissolved Organic Matter on Estuarine Microbial Community Composition and Function , 2017, Front. Microbiol..

[33]  M. Fogel,et al.  Trophic interactions and food web structure of a subantarctic marine food web in the Beagle Channel: Bahía Lapataia, Argentina , 2017, Polar Biology.

[34]  J. Allen,et al.  Biological or microbial carbon pump? The role of phytoplankton stoichiometry in ocean carbon sequestration , 2016 .

[35]  E. A. Gomez,et al.  The Pacific-Atlantic connection: Biogeochemical signals in the southern end of the Argentine shelf , 2016 .

[36]  D. Baldwin,et al.  Allochthonous dissolved organic carbon in river, lake and coastal systems: Transport, function and ecological role , 2016 .

[37]  N. Keren,et al.  Iron–Nutrient Interactions within Phytoplankton , 2016, Front. Plant Sci..

[38]  G. Johnson,et al.  Subantarctic and Polar Fronts of the Antarctic Circumpolar Current and Southern Ocean Heat and Freshwater Content Variability: A View from Argo , 2016 .

[39]  P. Raymond,et al.  Hydrological and biogeochemical controls on watershed dissolved organic matter transport: pulse-shunt concept. , 2016, Ecology.

[40]  C. Legrand,et al.  Allochthonous Carbon—a Major Driver of Bacterioplankton Production in the Subarctic Northern Baltic Sea , 2015, Microbial Ecology.

[41]  M. Weinbauer,et al.  The microbial carbon pump concept: Potential biogeochemical significance in the globally changing ocean , 2015 .

[42]  R. Nicholls,et al.  Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding - A Global Assessment , 2015, PloS one.

[43]  L. Anderson,et al.  DOM in the Arctic Ocean , 2015 .

[44]  J. Gasol,et al.  Flow Cytometric Determination of Microbial Abundances and Its Use to Obtain Indices of Community Structure and Relative Activity , 2015 .

[45]  M. Weinbauer,et al.  Enhanced viral production and virus-mediated mortality of bacterioplankton in a natural iron-fertilized bloom event above the Kerguelen Plateau , 2014 .

[46]  Philippe Ziegler,et al.  Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota , 2014, Global change biology.

[47]  Jean-Pascal van Ypersele de Strihou Climate Change 2014 - Synthesis Report , 2015 .

[48]  M. Hoffmeyer,et al.  The planktonic ciliate community and its relationship with the environmental conditions and water quality in two bays of the Beagle Channel, Argentina , 2013, Journal of the Marine Biological Association of the United Kingdom.

[49]  Jasper A. Vrugt,et al.  Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter , 2013 .

[50]  Dennis A. Hansell Recalcitrant dissolved organic carbon fractions. , 2013, Annual review of marine science.

[51]  M. Ardelan,et al.  Assessing the micro-phytoplankton response to nitrate in Comau Fjord (42°S) in Patagonia (Chile), using a microcosms approach , 2013, Environmental Monitoring and Assessment.

[52]  Marcelo Hernando,et al.  Degradación fotoquímica del carbono orgánico disuelto: Producción de peróxido de hidrógeno y efectos potenciales sobre el plancton en el Canal Beagle (Tierra del Fuego) , 2012 .

[53]  C. Brussaard,et al.  Regional Variation in Lytic and Lysogenic Viral Infection in the Southern Ocean and Its Contribution to Biogeochemical Cycling , 2012, Applied and Environmental Microbiology.

[54]  J. Esteves,et al.  Sources and distribution of aliphatic and polyaromatic hydrocarbons in coastal sediments from the Ushuaia Bay (Tierra del Fuego, Patagonia, Argentina). , 2012, Marine environmental research.

[55]  G. G. Bujalesky La inundación del Valle Beagle (11.000 AÑOS A.P.), Tierra del Fuego. The Flood of the Beagle Valley (11.000 YR B.P.), Tierra del Fuego. , 2011 .

[56]  G. Ferreyra,et al.  Seasonal phytoplankton dynamics in extreme southern South America (Beagle Channel, Argentina) , 2011 .

[57]  C. Freeman,et al.  Decomposition ‘hotspots’ in a rewetted peatland: implications for water quality and carbon cycling , 2011, Hydrobiologia.

[58]  John Z. Shi,et al.  A short note on the dispersion, mixing, stratification and circulation within the plume of the partially-mixed Changjiang River estuary, China , 2011 .

[59]  S. Zeeman,et al.  Characteristics of a Shallow River Plume: Observations from the Saco River Coastal Observing System , 2011 .

[60]  V. Montecino,et al.  Size diversity as an expression of phytoplankton community structure and the identification of its patterns on the scale of fjords and channels , 2011 .

[61]  M. N. Gil,et al.  Assessment of recent sediment influence in an urban polluted subantarctic coastal ecosystem. Beagle Channel (Southern Argentina). , 2011, Marine pollution bulletin.

[62]  Dennis A. Hansell,et al.  Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean , 2010, Nature Reviews Microbiology.

[63]  N. Silva,et al.  Primary production and plankton dynamics in the Reloncaví Fjord and the Interior Sea of Chiloé, Northern Patagonia, Chile , 2010 .

[64]  C. Moore,et al.  Phytoplankton and light limitation in the Southern Ocean: Learning from high‐nutrient, high‐chlorophyll areas , 2010 .

[65]  D. Campbell,et al.  Cell size trade-offs govern light exploitation strategies in marine phytoplankton. , 2010, Environmental microbiology.

[66]  C. Brussaard,et al.  Viral-mediated lysis of microbes and carbon release in the sub-Antarctic and Polar Frontal zones of the Australian Southern Ocean. , 2009, Environmental microbiology.

[67]  E. Molua Accommodation of climate change in coastal areas of cameroon: selection of household-level protection options , 2009 .

[68]  F. Azam,et al.  Major Role of Microbes in Carbon Fluxes during Austral Winter in the Southern Drake Passage , 2009, PloS one.

[69]  M. N. Gil,et al.  Environmental Characterization of a Eutrophicated Semi-Enclosed System: Nutrient Budget (Encerrada Bay, Tierra del Fuego Island, Patagonia, Argentina) , 2009 .

[70]  W. Ryan,et al.  Global Multi‐Resolution Topography synthesis , 2009 .

[71]  U. Sommer,et al.  Effect of zooplankton‐mediated trophic cascades on marine microbial food web components (bacteria, nanoflagellates, ciliates) , 2009 .

[72]  J. Rabassa,et al.  Late Cenozoic glaciations in Patagonia and Tierra del Fuego: an updated review , 2011 .

[73]  J. D. Ritchie,et al.  Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter , 2008 .

[74]  H. González,et al.  The relative importance of microbial and classical food webs in a highly productive coastal upwelling area , 2007 .

[75]  F. Biancalana,et al.  Micro and mesozooplankton composition during winter in Ushuaia and Golondrina Bays (Beagle Channel, Argentina) , 2007 .

[76]  Paula G Coble,et al.  Marine optical biogeochemistry: the chemistry of ocean color. , 2007, Chemical reviews.

[77]  C. Suttle Viruses in the sea , 2005, Nature.

[78]  C. Brussaard Optimization of Procedures for Counting Viruses by Flow Cytometry , 2004, Applied and Environmental Microbiology.

[79]  C. Pedrós-Alió,et al.  Regulation of bacterial assemblages in oligotrophic plankton systems: results from experimental and empirical approaches , 2002, Antonie van Leeuwenhoek.

[80]  B. Bergamaschi,et al.  Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. , 2003, Environmental science & technology.

[81]  M. Weinbauer,et al.  Marine Microbial Food Web Structure and Function , 2003 .

[82]  Reiner Schlitzer,et al.  Interactive analysis and visualization of geoscience data with ocean data view , 2002 .

[83]  C. W. Carlson Production and Removal Processes , 2002 .

[84]  D. Vaulot,et al.  Enumeration of Phytoplankton, Bacteria, and Viruses in Marine Samples , 1999, Current protocols in cytometry.

[85]  O Hammer-Muntz,et al.  PAST: paleontological statistics software package for education and data analysis version 2.09 , 2001 .

[86]  T. Antezana Plankton of Southern Chilean fjords: trends and linkages , 1999 .

[87]  T. Antezana Hydrographic features of Magellan and Fuegian inland passages and adjacent Subantarctic waters , 1999 .

[88]  J. Fuhrman,et al.  Significance of Size and Nucleic Acid Content Heterogeneity as Measured by Flow Cytometry in Natural Planktonic Bacteria , 1999, Applied and Environmental Microbiology.

[89]  C. Suttle,et al.  Viruses and Nutrient Cycles in the Sea Viruses play critical roles in the structure and function of aquatic food webs , 1999 .

[90]  J. Fuhrman Marine viruses and their biogeochemical and ecological effects , 1999, Nature.

[91]  Farooq Azam,et al.  Microbial Control of Oceanic Carbon Flux: The Plot Thickens , 1998, Science.

[92]  Gustavo A Lovrich La pesquería mixta de las centollas Lithodes santolla y Paralomis granulosa (Anomura: Lithodidae) en Tierra del Fuego, Argentina , 1997 .

[93]  F. Rassoulzadegan,et al.  Plankton and nutrient dynamics in marine waters , 1995 .

[94]  J. Rabassa,et al.  Late quaternary evolution of a subantarctic paleofjord, Tierra del Fuego , 1993 .

[95]  E. Sherr,et al.  Role of microbes in pelagic food webs: a revised concept , 1988 .

[96]  M. Brzezinski,et al.  THE Si:C:N RATIO OF MARINE DIATOMS: INTERSPECIFIC VARIABILITY AND THE EFFECT OF SOME ENVIRONMENTAL VARIABLES 1 , 1985 .

[97]  J. G. Field,et al.  The Ecological Role of Water-Column Microbes in the Sea* , 1983 .

[98]  A. C. Redfield The biological control of chemical factors in the environment. , 1960, Science progress.

[99]  H. Sverdrup,et al.  On Conditions for the Vernal Blooming of Phytoplankton , 1953 .