Supersymmetry with Radiatively-Driven Naturalness: Implications for WIMP and Axion Searches

By insisting on naturalness in both the electroweak and quantum chromodynamics (QCD) sectors of the minimal supersymmetric standard model (MSSM), the portrait for dark matter production is seriously modified from the usual weakly interacting massive particle (WIMP) miracle picture. In supersymmetry (SUSY) models with radiatively-driven naturalness (radiative natural SUSY or radiative natural SUSY (RNS)) which include a Dine–Fischler–Srednicki–Zhitnitsky (DFSZ)-like solution to the strong charge-conjugation-parity (CP) and SUSY \(\mu\) problems, dark matter is expected to be an admixture of both axions and higgsino-like WIMPs. The WIMP/axion abundance calculation requires simultaneous solution of a set of coupled Boltzmann equations which describe quasi-stable axinos and saxions. In most of parameter space, axions make up the dominant contribution of dark matter although regions of WIMP dominance also occur. We show the allowed range of Peccei-Quinn (PQ) scale \(f_a\) and compare to the values expected to be probed by the axion dark matter search experiment (ADMX) axion detector in the near future. We also show WIMP detection rates, which are suppressed from usual expectations, because now WIMPs comprise only a fraction of the total dark matter. Nonetheless, ton-scale noble liquid detectors should be able to probe the entirety of RNS parameter space. Indirect WIMP detection rates are less propitious since they are reduced by the square of the depleted WIMP abundance.

[1]  Y. Nomura,et al.  Supersymmetry, Naturalness, and Signatures at the LHC , 2006, hep-ph/0602096.

[2]  E. Shellard,et al.  Do axions need inflation , 1989 .

[3]  Hiromasa Komatsu,et al.  Aspects of grand unified models with softly broken supersymmetry , 1982 .

[4]  Jonathan L. Feng,et al.  Naturalness re-examined: Implications for supersymmetry searches , 2000, hep-ph/0003138.

[5]  Turner,et al.  Cosmic and local mass density of "invisible" axions. , 1986, Physical review. D, Particles and fields.

[6]  J. T. Childers,et al.  Inclusive search for same-sign dilepton signatures in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector , 2011, 1108.0366.

[7]  H. Baer,et al.  How conventional measures overestimate electroweak fine-tuning in supersymmetric theory , 2013, 1309.2984.

[8]  Soft supersymmetry breaking terms from supergravity and superstring models , 1997, hep-ph/9707209.

[9]  M. M. Muhlleitner,et al.  Decays of Supersymmetric Particles --- the Program SUSY-HIT , 2006 .

[10]  M. Bisset Detection of Higgs Bosons of the Minimal Supersymmetric Standard Model at Hadron Supercolliders. , 1995 .

[11]  H. Baer,et al.  Hidden SUSY at the LHC: the light higgsino-world scenario and the role of a lepton collider , 2011, 1107.5581.

[12]  Landscape of little hierarchy , 2007, hep-ph/0702002.

[13]  Radovan Dermísek,et al.  Escaping the large fine-tuning and little hierarchy problems in the next to minimal supersymmetric model and h --> aa decays. , 2005, Physical review letters.

[14]  S. Ferrara,et al.  Gauge models with spontaneously broken local supersymmetry , 1982 .

[15]  Riccardo Barbieri,et al.  About the fine-tuning price of LEP , 1998, hep-ph/9801353.

[16]  H. Baer,et al.  Weak Scale Supersymmetry: From Superfields to Scattering Events , 2012 .

[17]  H. Baer,et al.  Radiative natural SUSY with a 125 GeV Higgs boson , 2022 .

[18]  L. Ibáñez,et al.  Towards a theory of soft terms for the supersymmetric Standard Model , 1993, hep-ph/9308271.

[19]  H. Baer,et al.  Radiative natural supersymmetry: Reconciling electroweak fine-tuning and the Higgs boson mass , 2012, 1212.2655.

[20]  K. J. Bae,et al.  Implications of naturalness for the heavy Higgs bosons of supersymmetry , 2014, 1407.3853.

[21]  M.Yu.Khlopov,et al.  The large-scale modulation of the density distribution in standard axionic CDM and its cosmological and physical impact , 1998, hep-ph/9812286.

[22]  Naturalness, weak scale supersymmetry, and the prospect for the observation of supersymmetry at the Fermilab Tevatron and at the CERN LHC , 1997, hep-ph/9710473.

[23]  A. Bottino,et al.  Probing the supersymmetric parameter space by weakly interacting massive particle direct detection , 2001 .

[24]  John Preskill,et al.  Cosmology of the invisible axion , 1983 .

[25]  H. Murayama,et al.  Radiative breaking of Peccei-Quinn symmetry at the intermediate mass scale , 1992 .

[26]  J. Louis,et al.  Model-independent analysis of soft terms in effective supergravity and in string theory , 1993, hep-th/9303040.

[27]  Werner Porod,et al.  SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e+e− colliders☆ , 2003, hep-ph/0301101.

[28]  The Cms Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012, 1207.7235.

[29]  G. Raffelt Axions: Motivation, limits and searches , 2006, hep-ph/0611118.

[30]  Jihn E. Kim,et al.  The μ-problem and the strong CP-problem , 1984 .

[31]  J. Hisano,et al.  Direct Search of Dark Matter in High-Scale Supersymmetry , 2012, 1210.5985.

[32]  A. P. Zhitnitskii Possible suppression of axion-hadron interactions , 1980 .

[33]  R. Peccei,et al.  CP Conservation in the Presence of Pseudoparticles , 1977 .

[34]  L. Rosenberg,et al.  Searches for Astrophysical and Cosmological Axions , 2006 .

[35]  Jihn E. Kim,et al.  Mixing of axino and goldstino, and axino mass , 2012, 1204.5495.

[36]  J. Lykken,et al.  The Soft supersymmetry breaking Lagrangian: Theory and applications , 2005 .

[37]  B. C. Allanach,et al.  SOFTSUSY: A program for calculating supersymmetric spectra☆ , 2001, hep-ph/0104145.

[38]  Jihn E. Kim Weak Interaction Singlet and Strong CP Invariance , 1979 .

[39]  S. Profumo Dissecting cosmic-ray electron-positron data with Occam’s razor: the role of known pulsars , 2008, 0812.4457.

[40]  H. Baer,et al.  Implications of a 125 GeV Higgs scalar for the LHC supersymmetry and neutralino dark matter searches , 2011, 1112.3017.

[41]  太田 信義 Grand Unified Theories Based on Local Supersymmetry , 1983 .

[42]  R. Barbieri Electroweak theory after the first Large Hadron Collider phase , 2013, 1309.3473.

[43]  Focus points and naturalness in supersymmetry , 1999, hep-ph/9909334.

[44]  A. Sakharov,et al.  The Nonhomogeneity problem for the primordial axion field , 1994 .

[45]  Results of a search for cold flows of dark matter axions. , 2005, Physical review letters.

[46]  F. Giudice Minimal low energy supergravity , 1988 .

[47]  Alexander Belyaev,et al.  Neutralino relic density in minimal supergravity with co-annihilations , 2002 .

[48]  S. Weinberg A new light boson , 1978 .

[49]  A Supersymmetry Primer , 1997, hep-ph/9709356.

[50]  Direct detection of dark matter in supersymmetric models , 2003, hep-ph/0305191.

[51]  Antonio Delgado,et al.  Solving the little hierarchy problem with a singlet and explicit μ terms. , 2010, Physical review letters.

[52]  R. Kaul Gauge hierarchy in a supersymmetric model , 1982 .

[53]  Gianfranco Bertone,et al.  Particle Dark Matter: List of contributors , 2010 .

[54]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[55]  B. Dutta,et al.  No-scale solution to little hierarchy , 2007, 0705.4317.

[56]  Jihn E. Kim,et al.  Neutralino dark matter from heavy axino decay , 2008, 0801.0491.

[57]  Kyu Jung Bae,et al.  Mixed axion/neutralino dark matter in the SUSY DFSZ axion model , 2013 .

[58]  R. Davis Cosmic axions from cosmic strings , 1986 .

[59]  H. Murayama Future experimental programs , 2013, 1401.0966.

[60]  W. de Boer,et al.  Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP , 1991 .

[61]  D. Harari,et al.  On the evolution of global strings in the early universe , 1987 .

[62]  J. Hagelin,et al.  Weak symmetry breaking by radiative corrections in broken supergravity , 1983 .

[63]  N. A. McDougall On the U(1) problem , 1984 .

[64]  M. Dine Naturalness Under Stress , 2015, 1501.01035.

[65]  K. A. Olive,et al.  Exploration of the MSSM with non-universal Higgs masses , 2002, hep-ph/0210205.

[66]  Laurence F Abbott,et al.  A cosmological bound on the invisible axion , 1983 .

[67]  Michael Dine,et al.  The Not So Harmless Axion , 1983 .

[68]  A. Geringer-Sameth,et al.  Exclusion of canonical weakly interacting massive particles by joint analysis of Milky Way dwarf galaxies with data from the Fermi Gamma-Ray Space Telescope. , 2011, Physical review letters.

[69]  K. J. Bae,et al.  Natural little hierarchy for SUSY from radiative breaking of the Peccei-Quinn symmetry , 2014, 1410.7500.

[70]  G. Altarelli The Higgs: so simple yet so unnatural , 2013, 1308.0545.

[71]  H. Baer,et al.  Direct and indirect detection of higgsino-like WIMPs: Concluding the story of electroweak naturalness , 2013, 1303.3816.

[72]  R. Arnowitt,et al.  Locally Supersymmetric Grand Unification , 1982 .

[73]  B. Ovrut Supersymmetry, supergravity, and particle physics , 1986 .

[74]  Origin of the matter-antimatter asymmetry , 2003, hep-ph/0303065.

[75]  K. J. Bae,et al.  Cosmology of the DFSZ axino , 2011, 1111.5962.

[76]  J. Lykken,et al.  Supersymmetry and the crisis in physics. , 2014, Scientific American.

[77]  J. T. Childers,et al.  Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC , 2012 .

[78]  R. Sundrum,et al.  SUSY, the Third Generation and the LHC , 2011, 1110.6670.

[79]  H. Baer,et al.  Post-LHC7 fine-tuning in the minimal supergravity/CMSSM model with a 125 GeV Higgs boson , 2012, 1210.3019.

[80]  F. Paige,et al.  ISAJET 7.40: A Monte Carlo event generator for p p, anti-p p, and e+ e- reactions , 1998 .

[81]  L. Ibáñez,et al.  Supersymmetric Higgs and radiative electroweak breaking , 2007 .

[82]  A. Bottinoa,et al.  Probing the supersymmetric parameter space by WIMP direct detection , 2000 .

[83]  Jared A. Evans,et al.  Toward full LHC coverage of natural supersymmetry , 2013, 1310.5758.

[84]  G. Hooft Symmetry Breaking Through Bell-Jackiw Anomalies , 1976 .

[85]  G. Kane,et al.  A new (string motivated) approach to the little hierarchy problem , 2011, 1105.3765.

[86]  M. Yamaguchi,et al.  Is axino dark matter possible in supergravity , 1992 .

[87]  A. Vainshtein,et al.  Can Confinement Ensure Natural CP Invariance of Strong Interactions , 1980 .

[88]  High resolution search for dark-matter axions , 2006, astro-ph/0603108.

[89]  P. Gondolo,et al.  Dark matter axions revisited , 2009, 0903.4377.

[90]  H. Nilles,et al.  Weak interaction breakdown induced by supergravity , 1983 .

[91]  Nathaniel Craig,et al.  The State of Supersymmetry after Run I of the LHC , 2013, 1309.0528.

[92]  M. Gaillard,et al.  Little Supersymmetry and the Supersymmetric Little Hierarchy Problem , 2004, hep-ph/0404197.

[93]  H. Baer,et al.  Supergravity gauge theories strike back: there is no crisis for SUSY but a new collider may be required for discovery , 2015, 1502.04127.

[94]  A. Geringer-Sameth,et al.  Exclusion of canonical weakly interacting massive particles by joint analysis of Milky Way dwarf galaxies with data from the Fermi Gamma-Ray Space Telescope. , 2011, Physical review letters.

[95]  H. Weldon,et al.  Analysis of the supersymmetry breaking induced by N = 1 supergravity theories , 1983 .

[96]  B. Ovrut,et al.  The locally supersymmetric geometrical hierarchy model , 1983 .

[97]  J. Ellis,et al.  OBSERVABLES IN LOW-ENERGY SUPERSTRING MODELS , 1986 .

[98]  C. Csáki,et al.  Supersymmetry without the little hierarchy , 2009, 0902.0015.

[99]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[100]  B. Harling,et al.  A natural little hierarchy for RS from accidental SUSY , 2011, 1104.3171.

[101]  H. Baer,et al.  SUSY models under siege: LHC constraints and electroweak fine-tuning , 2014, 1404.2277.

[102]  Ken-ichi Okumura,et al.  TeV scale mirage mediation for natural little SUSY hierarchy , 2007 .

[103]  K. Jedamzik Big bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles , 2006, hep-ph/0604251.

[104]  A. Nelson Dynamical Breaking of Supersymmetry , 2008 .

[105]  Jonathan L. Feng,et al.  A Natural 125 GeV Higgs Boson in the MSSM from Focus Point Supersymmetry with A-Terms , 2012, 1205.2372.

[106]  Yasunori Nomura,et al.  A Solution to the Supersymmetric Fine-Tuning Problem within theMSSM , 2005 .

[107]  E. Chun Dark matter in the Kim-Nilles mechanism , 2011, 1104.2219.

[108]  K. Sakurai,et al.  A Solution for the Little Hierarchy Problem and b→sγ , 2007 .

[109]  L. Ibáñez Locally Supersymmetric SU(5) Grand Unification , 1982 .

[110]  G. Giudice Naturalness after LHC8 , 2013, 1307.7879.

[111]  K. J. Bae,et al.  Mainly axion cold dark matter from natural supersymmetry , 2013, 1309.0519.

[112]  Q. Shafi,et al.  Higgs Boson Mass, Sparticle Spectrum and Little Hierarchy Problem in Extended MSSM , 2008, 0807.3055.

[113]  Michael Dine,et al.  A Simple Solution to the Strong CP Problem with a Harmless Axion , 1981 .

[114]  Alexander Belyaev,et al.  Direct, indirect and collider detection of neutralino dark matter in SUSY models with non-universal Higgs masses , 2005, hep-ph/0504001.

[115]  R. Barbieri,et al.  Upper Bounds on Supersymmetric Particle Masses , 1988 .

[116]  Riccardo Barbieri,et al.  S-particles at their naturalness limits , 2009, 0906.4546.

[117]  H. Baer,et al.  Snowmass whitepaper: Exploring natural SUSY via direct and indirect detection of higgsino-like WIMPs , 2013, 1306.4183.

[118]  J. Lykken,et al.  Supergravity as the messenger of supersymmetry breaking , 1983 .

[119]  Howard E. Haber,et al.  Higgs Boson Theory and Phenomenology , 2003 .

[120]  Andreas Weiler,et al.  Natural SUSY endures , 2011, Journal of High Energy Physics.

[121]  John Ellis,et al.  The MSSM Parameter Space with Non-Universal Higgs Masses , 2002 .

[122]  H. Baer,et al.  Mixed axion/neutralino cold dark matter in supersymmetric models , 2011, 1103.5413.

[123]  C. Lopez,et al.  The low-energy supersymmetric spectrum according to N = 1 supergravity guts , 1985 .

[124]  F. Wilczek Problem of Strong $P$ and $T$ Invariance in the Presence of Instantons , 1978 .

[125]  A. R. Zhitnitskij On possible suppression of the axion-hadron interactions , 1980 .

[126]  Graham G. Ross,et al.  SUSY: Quo Vadis? , 2014 .

[127]  John Stillwell,et al.  Symmetry , 2000, Am. Math. Mon..

[128]  H. Nilles Dynamically broken supergravity and the hierarchy problem , 1982 .

[129]  W. Keung,et al.  Dark matter and pulsar signals for Fermi LAT, PAMELA, ATIC, HESS and WMAP data , 2009, 0904.2001.

[130]  T Glanzman,et al.  Constraining dark matter models from a combined analysis of Milky Way satellites with the Fermi Large Area Telescope. , 2011, Physical review letters.

[131]  K. Choi,et al.  Cosmological implications of radiatively generated axion scale , 1996, hep-ph/9608222.

[132]  K. J. Bae,et al.  Coupled Boltzmann computation of mixed axion neutralino dark matter in the SUSY DFSZ axion model , 2013, 1309.5365.

[133]  Leonard Susskind,et al.  Dynamics of Spontaneous Symmetry Breaking in the Weinberg-Salam Theory , 1979 .

[134]  H. Baer,et al.  Radiative natural supersymmetry with a 125 GeV Higgs boson. , 2012, Physical review letters.

[135]  M. Gaillard,et al.  Rare Decay Modes of the K-Mesons in Gauge Theories , 1974 .

[136]  K. J. Bae,et al.  Effective interactions of axion supermultiplet and thermal production of axino dark matter , 2011, 1106.2452.

[137]  Stephen P. Martin,et al.  Non-universal gaugino masses, the supersymmetric little hierarchy problem, and dark matter , 2012, 1201.2989.

[138]  M. Szydagis,et al.  First dark matter search results from a 4-kg CF$_3$I bubble chamber operated in a deep underground site , 2012, 1204.3094.

[139]  Graham G. Ross,et al.  SU(2)L × U(1) symmetry breaking as a radiative effect of supersymmetry breaking in GUTs , 1982 .

[140]  L. Roszkowski,et al.  Dark matter production in the early Universe: beyond the thermal WIMP paradigm , 2014, 1407.0017.