Treewidth Computation and Kernelization in the Parallel External Memory Model

We present a randomized algorithm which computes, for any fixed k, a tree decomposition of width at most k of any input graph. We analyze it in the parallel external memory (PEM) model that measures efficiency by counting the number of cache misses on a multi-CPU private cache shared memory machine. Our algorithm has sorting complexity, which we prove to be optimal for a large parameter range.

[1]  Edward F. Grove,et al.  External-memory graph algorithms , 1995, SODA '95.

[2]  Michael R. Fellows,et al.  On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..

[3]  Ulrich Meyer,et al.  Elementary Graph Algorithms in External Memory , 2002, Algorithms for Memory Hierarchies.

[4]  Dimitrios M. Thilikos,et al.  (Meta) Kernelization , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[5]  Christian Komusiewicz,et al.  New Races in Parameterized Algorithmics , 2012, MFCS.

[6]  Nodari Sitchinava,et al.  On the Complexity of List Ranking in the Parallel External Memory Model , 2014, MFCS.

[7]  Fedor V. Fomin,et al.  Planar F-Deletion: Approximation, Kernelization and Optimal FPT Algorithms , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[8]  Ulrich Meyer,et al.  Algorithms for Memory Hierarchies , 2003, Lecture Notes in Computer Science.

[9]  Michael T. Goodrich,et al.  Fundamental parallel algorithms for private-cache chip multiprocessors , 2008, SPAA '08.

[10]  Gero Greiner,et al.  Sparse Matrix Computations and their I/O Complexity , 2012 .

[11]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[12]  Michael A. Langston,et al.  Parameterized and Exact Computation, Second International Workshop, IWPEC 2006, Zürich, Switzerland, September 13-15, 2006, Proceedings , 2006, IWPEC.

[13]  David G. Kirkpatrick,et al.  Parallel Construction of Subdivision Hierarchies , 1989, J. Comput. Syst. Sci..

[14]  Torben Hagerup,et al.  Parallel Algorithms with Optimal Speedup for Bounded Treewidth , 1995, ICALP.

[15]  Rolf Niedermeier,et al.  Linear-Time Computation of a Linear Problem Kernel for Dominating Set on Planar Graphs , 2011, IPEC.

[16]  Christophe Paul,et al.  Linear Kernels and Single-Exponential Algorithms Via Protrusion Decompositions , 2012, ICALP.

[17]  Dimitrios M. Thilikos,et al.  Bidimensionality and kernels , 2010, SODA '10.

[18]  Fedor V. Fomin,et al.  Planar F-Deletion: Approximation and Optimal FPT Algorithms , 2012, ArXiv.

[19]  Torben Hagerup Simpler Linear-Time Kernelization for Planar Dominating Set , 2011, IPEC.

[20]  Alok Aggarwal,et al.  The input/output complexity of sorting and related problems , 1988, CACM.

[21]  Norbert Zeh,et al.  I/O-Efficient Algorithms for Bounded Treewidth Graphs , 2006 .

[22]  Vladimiro Sassone,et al.  Mathematical Foundations of Computer Science 2012 , 2012, Lecture Notes in Computer Science.

[23]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[24]  Uzi Vishkin,et al.  Randomized speed-ups in parallel computation , 2015, STOC '84.

[25]  Michael T. Goodrich,et al.  Parallel external memory graph algorithms , 2010, 2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS).

[26]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[27]  Andrew Drucker New Limits to Classical and Quantum Instance Compression , 2015, SIAM J. Comput..

[28]  Ton Kloks,et al.  Efficient and Constructive Algorithms for the Pathwidth and Treewidth of Graphs , 1993, J. Algorithms.