Evaluating Model Simulations of Twentieth-Century Sea-Level Rise. Part II: Regional Sea-Level Changes

AbstractTwentieth-century regional sea level changes are estimated from 12 climate models from phase 5 of the Climate Model Intercomparison Project (CMIP5). The output of the CMIP5 climate model simulations was used to calculate the global and regional sea level changes associated with dynamic sea level, atmospheric loading, glacier mass changes, and ice sheet surface mass balance contributions. The contribution from groundwater depletion, reservoir storage, and dynamic ice sheet mass changes are estimated from observations as they are not simulated by climate models. All contributions are summed, including the glacial isostatic adjustment (GIA) contribution, and compared to observational estimates from 27 tide gauge records over the twentieth century (1900–2015). A general agreement is found between the simulated sea level and tide gauge records in terms of interannual to multidecadal variability over 1900–2015. But climate models tend to systematically underestimate the observed sea level trends, partic...

[1]  S. Planton,et al.  Improving sea level simulation in Mediterranean regional climate models , 2018, Climate Dynamics.

[2]  X. Fettweis,et al.  Evaluating model simulations of 20th century sea-level rise. Part 1: global mean sea-level change , 2017 .

[3]  X. Fettweis,et al.  Regional Sea Level Changes for the Twentieth and the Twenty-First Centuries Induced by the Regional Variability in Greenland Ice Sheet Surface Mass Loss , 2016 .

[4]  Jonathan M. Gregory,et al.  The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) contribution to CMIP6: investigation of sea-level and ocean climate change in response to CO 2 forcing , 2016 .

[5]  D. Smith,et al.  On the Drivers and Predictability of Seasonal-to-Interannual Variations in Regional Sea Level , 2016 .

[6]  Xuebin Zhang,et al.  Evaluation of the interdecadal variability of sea surface temperature and sea level in the Pacific in CMIP3 and CMIP5 models , 2016 .

[7]  Xavier Fettweis,et al.  Anthropogenic forcing dominates global mean sea-level rise since 1970 , 2016 .

[8]  James S. Famiglietti,et al.  Fate of Water Pumped from Underground and Contributions to Sea Level Rise , 2016 .

[9]  W. Hobbs,et al.  An Energy Conservation Analysis of Ocean Drift in the CMIP5 Global Coupled Models , 2016 .

[10]  B. Meyssignac,et al.  Explaining the Spread in Global Mean Thermosteric Sea Level Rise in CMIP5 Climate Models , 2015 .

[11]  J. Cogley,et al.  Brief Communication: Global reconstructions of glacier mass change during the 20th century are consistent , 2015 .

[12]  C. Conrad,et al.  The impact of groundwater depletion on spatial variations in sea level change during the past century , 2015 .

[13]  E. Willerslev,et al.  Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900 , 2015, Nature.

[14]  R. Ponte,et al.  The partition of regional sea level variability , 2015 .

[15]  Daniel F. Martin,et al.  Century-scale simulations of the response of the West Antarctic Ice Sheet to a warming climate , 2015 .

[16]  J. Lenaerts,et al.  Representing Greenland ice sheet freshwater fluxes in climate models , 2015 .

[17]  Ricarda Winkelmann,et al.  Consistent evidence of increasing Antarctic accumulation with warming , 2015 .

[18]  M. Latif,et al.  Effects of long-term variability on projections of twenty-first century dynamic sea level , 2015 .

[19]  J. Gregory,et al.  Analysis of the regional pattern of sea level change due to ocean dynamics and density change for 1993–2099 in observations and CMIP5 AOGCMs , 2015, Climate Dynamics.

[20]  Mark Carson,et al.  The Impact of Regional Multidecadal and Century-Scale Internal Climate Variability on Sea Level Trends in CMIP5 Models , 2015 .

[21]  R. Kopp,et al.  Probabilistic reanalysis of twentieth-century sea-level rise , 2015, Nature.

[22]  W. Peltier,et al.  Space geodesy constrains ice age terminal deglaciation: The global ICE‐6G_C (VM5a) model , 2015 .

[23]  E. Rignot,et al.  Mass loss of the Amundsen Sea Embayment of West Antarctica from four independent techniques , 2014 .

[24]  B. Marzeion,et al.  Earliest local emergence of forced dynamic and steric sea-level trends in climate models , 2014 .

[25]  Xuebin Zhang,et al.  Time of emergence for regional sea-level change , 2014 .

[26]  Gabriel Jordà,et al.  Detection time for global and regional sea level trends and accelerations , 2014 .

[27]  P. Watson,et al.  Australian sea levels—Trends, regional variability and influencing factors , 2014 .

[28]  David Parkes,et al.  Attribution of global glacier mass loss to anthropogenic and natural causes , 2014, Science.

[29]  C. Tebaldi,et al.  Probabilistic 21st and 22nd century sea‐level projections at a global network of tide‐gauge sites , 2014 .

[30]  P. Döll,et al.  Global‐scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites , 2014 .

[31]  Angelyn W. Moore,et al.  The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories , 2014 .

[32]  Y. Wada,et al.  Comparing tide gauge observations to regional patterns of sea-level change (1961–2003) , 2014 .

[33]  B. Samuels,et al.  An assessment of global and regional sea level for years 1993-2007 in a suite of interannual CORE-II simulations , 2014 .

[34]  B. Smith,et al.  Marine Ice Sheet Collapse Potentially Under Way for the Thwaites Glacier Basin, West Antarctica , 2014, Science.

[35]  D. Stammer,et al.  Projecting twenty-first century regional sea-level changes , 2014, Climatic Change.

[36]  J. Gregory,et al.  Attribution of the spatial pattern of CO2-forced sea level change to ocean surface flux changes , 2014 .

[37]  Aslak Grinsted,et al.  Trends and acceleration in global and regional sea levels since 1807 , 2014 .

[38]  Myoung-Jong Noh,et al.  An improved mass budget for the Greenland ice sheet , 2013 .

[39]  Jaclyn N. Brown,et al.  Climate Drift in the CMIP5 Models , 2013 .

[40]  J. Fasullo,et al.  Australia's unique influence on global sea level in 2010–2011 , 2013 .

[41]  J. Gregory,et al.  Twentieth-century global-mean sea-level rise: is the whole greater than the sum of the parts? , 2013 .

[42]  M. Balmaseda,et al.  Evaluation of the ECMWF ocean reanalysis system ORAS4 , 2013 .

[43]  William E. Johns,et al.  The atlantic meridional heat transport at 26.5°N and its relationship with the MOC in the RAPID array and the GFDL and NCAR coupled models , 2013 .

[44]  J. Gregory,et al.  Feedbacks and mechanisms affecting the global sensitivity of glaciers to climate change , 2013 .

[45]  Katja Lohmann,et al.  Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI‐Earth system model , 2013 .

[46]  B. Stevens,et al.  Atmospheric component of the MPI‐M Earth System Model: ECHAM6 , 2013 .

[47]  S. Jevrejeva,et al.  New Data Systems and Products at the Permanent Service for Mean Sea Level , 2013 .

[48]  H. Douville,et al.  The CNRM-CM5.1 global climate model: description and basic evaluation , 2013, Climate Dynamics.

[49]  J. Gregory,et al.  Climate models without preindustrial volcanic forcing underestimate historical ocean thermal expansion , 2013 .

[50]  J. Gregory,et al.  Evaluating the ability of process based models to project sea-level change , 2013 .

[51]  S. Bony,et al.  Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5 , 2013, Climate Dynamics.

[52]  J. Bamber,et al.  The gravitationally consistent sea‐level fingerprint of future terrestrial ice loss , 2013 .

[53]  Diana Verseghy,et al.  The Canadian Fourth Generation Atmospheric Global Climate Model (CanAM4). Part I: Representation of Physical Processes , 2013, Data, Models and Analysis.

[54]  Riccardo E. M. Riva,et al.  A scaling approach to project regional sea level rise and its uncertainties , 2013 .

[55]  Anny Cazenave,et al.  Causes for contemporary regional sea level changes. , 2013, Annual review of marine science.

[56]  G. Spada,et al.  Modeling sea level changes and geodetic variations by glacial isostasy: the improved SELEN code , 2012, 1212.5061.

[57]  X. Collilieux,et al.  Mitigating the effects of vertical land motion in tide gauge records using a state-of-the-art GPS velocity field , 2012 .

[58]  A. Cazenave,et al.  Estimating ENSO Influence on the Global Mean Sea Level, 1993–2010 , 2012 .

[59]  J. Wahr,et al.  Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada , 2012 .

[60]  Eric Rignot,et al.  A Reconciled Estimate of Ice-Sheet Mass Balance , 2012, Science.

[61]  Alexander H. Jarosch,et al.  Past and future sea-level change from the surface mass balance of glaciers , 2012 .

[62]  X. Fettweis,et al.  21st century projections of surface mass balance changes for major drainage systems of the Greenland ice sheet , 2012 .

[63]  R. Steven Nerem,et al.  The 2011 La Niña: So strong, the oceans fell , 2012 .

[64]  Christoph Heinze,et al.  Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM) , 2012 .

[65]  X. Fettweis,et al.  Brief communication "Important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland ice sheet" , 2012 .

[66]  J. Yin Century to multi‐century sea level rise projections from CMIP5 models , 2012 .

[67]  Michael N. Tsimplis,et al.  Mechanisms of decadal sea level variability in the eastern North Atlantic and the Mediterranean Sea , 2012 .

[68]  Xavier Fettweis,et al.  Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR , 2012 .

[69]  Anny Cazenave,et al.  Sea level: A review of present-day and recent-past changes and variability , 2012 .

[70]  Richard J. Greatbatch,et al.  Physical processes that impact the evolution of global mean sea level in ocean climate models , 2012 .

[71]  K. Kjær,et al.  An aerial view of 80 years of climate-related glacier fluctuations in southeast Greenland , 2012 .

[72]  M. Latif,et al.  A multimodel comparison of centennial Atlantic meridional overturning circulation variability , 2012, Climate Dynamics.

[73]  B. Chao,et al.  Past and future contribution of global groundwater depletion to sea‐level rise , 2012 .

[74]  D. Vaughan,et al.  Antarctic ice-sheet loss driven by basal melting of ice shelves , 2012, Nature.

[75]  Guy Wöppelmann,et al.  Coastal sea level rise in southern Europe and the nonclimate contribution of vertical land motion , 2012 .

[76]  Karl E. Taylor,et al.  An overview of CMIP5 and the experiment design , 2012 .

[77]  E. van Meijgaard,et al.  A new, high‐resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling , 2012 .

[78]  H. Tsujino,et al.  A New Global Climate Model of the Meteorological Research Institute: MRI-CGCM3 —Model Description and Basic Performance— , 2012 .

[79]  Anny Cazenave,et al.  An Assessment of Two-Dimensional Past Sea Level Reconstructions Over 1950–2009 Based on Tide-Gauge Data and Different Input Sea Level Grids , 2012, Surveys in Geophysics.

[80]  I. Shennan,et al.  Late Holocene vertical land motion and relative sea‐level changes: lessons from the British Isles , 2012 .

[81]  Konrad Steffen,et al.  Greenland Ice Sheet surface mass balance 1870 to 2010 based on Twentieth Century Reanalysis, and links with global climate forcing , 2011 .

[82]  C. Jones,et al.  Development and evaluation of an Earth-System model - HadGEM2 , 2011 .

[83]  G. Kaser,et al.  A minimal model for reconstructing interannual mass balance variability of glaciers in the European Alps , 2011 .

[84]  M. Tamisiea,et al.  Ongoing glacial isostatic contributions to observations of sea level change , 2011 .

[85]  L. Konikow Contribution of global groundwater depletion since 1900 to sea‐level rise , 2011 .

[86]  A. Thomson,et al.  The representative concentration pathways: an overview , 2011 .

[87]  D. Stammer,et al.  Response of a Coupled Ocean–Atmosphere Model to Greenland Ice Melting , 2011 .

[88]  J. Gregory,et al.  Understanding and projecting sea level change , 2011 .

[89]  R. Nicholls,et al.  Sea‐level rise and impacts projections under a future scenario with large greenhouse gas emission reductions , 2011 .

[90]  M. Tamisiea,et al.  The moving boundaries of sea level change: understanding the origins of geographic variability , 2011 .

[91]  J. Cogley,et al.  Estimating the Glacier Contribution to Sea-Level Rise for the Period 1800–2005 , 2011 .

[92]  John B. Anderson,et al.  Understanding Sea-Level Rise and Variability , 2011 .

[93]  A. Cazenave,et al.  Two-dimensional reconstruction of the Mediterranean sea level over 1970-2006 from tide gage data and regional ocean circulation model outputs , 2011 .

[94]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[95]  N. White,et al.  Sea-Level Rise from the Late 19th to the Early 21st Century , 2011 .

[96]  K. Denman,et al.  Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases , 2011 .

[97]  Robert E. Kopp,et al.  Exploring high-end scenarios for local sea level rise to develop flood protection strategies for a low-lying delta—the Netherlands as an example , 2011 .

[98]  M. Kimoto,et al.  Convective Control of ENSO Simulated in MIROC , 2011 .

[99]  H. Hasumi,et al.  Improved Climate Simulation by MIROC5: Mean States, Variability, and Climate Sensitivity , 2010, Journal of Climate.

[100]  P. Clark,et al.  Sea level as a stabilizing factor for marine-ice-sheet grounding lines , 2010 .

[101]  Bruce C. Douglas,et al.  Experiments in Reconstructing Twentieth-Century Sea Levels , 2010 .

[102]  J. Gregory Long‐term effect of volcanic forcing on ocean heat content , 2010 .

[103]  Stephen M. Griffies,et al.  Spatial Variability of Sea Level Rise in Twenty-First Century Projections , 2010 .

[104]  Jens Schröter,et al.  Reconstruction of regional mean sea level anomalies from tide gauges using neural networks , 2010 .

[105]  Ramaswamy,et al.  The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3 , 2011 .

[106]  K. Lambeck,et al.  Paleoenvironmental Records, Geophysical Modeling, and Reconstruction of Sea-Level Trends and Variability on Centennial and Longer Timescales , 2010 .

[107]  C. Conrad,et al.  Spatial variability of sea level rise due to water impoundment behind dams , 2010 .

[108]  R. Kopp,et al.  Probabilistic assessment of sea level during the last interglacial stage , 2009, Nature.

[109]  G. Meehl,et al.  Decadal prediction: Can it be skillful? , 2009 .

[110]  D. Vaughan,et al.  Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years , 2009 .

[111]  D. Bromwich,et al.  Greenland Ice Sheet Surface Air Temperature Variability: 1840–2007* , 2009 .

[112]  Chris W. Hughes,et al.  Identifying the causes of sea-level change , 2009 .

[113]  A. Lombard,et al.  Regional patterns of observed sea level change: insights from a 1/4° global ocean/sea-ice hindcast , 2009 .

[114]  M. Bouin,et al.  Rates of sea‐level change over the past century in a geocentric reference frame , 2009 .

[115]  M. Marcos,et al.  Comparison of Mediterranean sea level fields for the period 1961-2000 as given by a data reconstruction and a 3D model , 2009 .

[116]  J. Graham Cogley,et al.  Geodetic and direct mass-balance measurements: comparison and joint analysis , 2009 .

[117]  Peter U. Clark,et al.  The Sea-Level Fingerprint of West Antarctic Collapse , 2009, Science.

[118]  M. Marcos,et al.  Coastal sea level trends in Southern Europe , 2008 .

[119]  Eric Rignot,et al.  Mass balance of the Greenland ice sheet from 1958 to 2007 , 2008 .

[120]  H. Schotman Shallow-earth rheology from glacial isostasy and satellite gravity : A sensitivity analysis for GOCE , 2008 .

[121]  D. Stammer Response of the global ocean to Greenland and Antarctic ice melting , 2008 .

[122]  D. Stammer,et al.  Response of Regional Sea Level to Atmospheric Pressure Loading in a Climate Change Scenario , 2008 .

[123]  B. Chao,et al.  Impact of Artificial Reservoir Water Impoundment on Global Sea Level , 2008, Science.

[124]  A. Weaver,et al.  The Role of Poleward-Intensifying Winds on Southern Ocean Warming , 2007 .

[125]  C. Schoof Ice sheet grounding line dynamics: Steady states, stability, and hysteresis , 2007 .

[126]  Giorgio Spada,et al.  SELEN: A Fortran 90 program for solving the "sea-level equation" , 2007, Comput. Geosci..

[127]  J. Clark,et al.  On Postglacial Sea Level , 2007 .

[128]  J. Marotzke,et al.  Regional Dynamic and Steric Sea Level Change in Response to the IPCC-A1B Scenario , 2007 .

[129]  J. Gregory,et al.  Understanding projections of sea level rise in a Hadley Centre coupled climate model , 2006 .

[130]  M. Haylock,et al.  The Predictability of Interdecadal Changes in ENSO Activity and ENSO Teleconnections , 2006 .

[131]  S. Klein,et al.  GFDL's CM2 Global Coupled Climate Models. Part I: Formulation and Simulation Characteristics , 2006 .

[132]  M. Cai Dynamical greenhouse-plus feedback and polar warming amplification. Part I: A dry radiative-transportive climate model , 2006 .

[133]  V. Canuto,et al.  Present-Day Atmospheric Simulations Using GISS ModelE: Comparison to In Situ, Satellite, and Reanalysis Data , 2006 .

[134]  J. Arblaster,et al.  Significant decadal-scale impact of volcanic eruptions on sea level and ocean heat content , 2005, Nature.

[135]  L. Vermeersen,et al.  Sensitivity of glacial isostatic adjustment models with shallow low-viscosity earth layers to the ice-load history in relation to the performance of GOCE and GRACE , 2005 .

[136]  A. Cazenave,et al.  Effects of land water storage on global mean sea level over the past half century , 2005 .

[137]  G. Danabasoglu,et al.  The Community Climate System Model Version 4 , 2011 .

[138]  W. Peltier GLOBAL GLACIAL ISOSTASY AND THE SURFACE OF THE ICE-AGE EARTH: The ICE-5G (VM2) Model and GRACE , 2004 .

[139]  M. Noble,et al.  Sea level response to ENSO along the central California coast: how the 1997–1998 event compares with the historic record , 2002 .

[140]  R. Stouffer,et al.  Comparison of Results from Several Aogcms for Global and Regional Sea-level Change 1900±2100 , 2000 .

[141]  M. Tamisiea,et al.  Recent mass balance of polar ice sheets inferred from patterns of global sea-level change , 2001, Nature.

[142]  D. Shankar,et al.  Are interdecadal sea level changes along the Indian coast influenced by variability of monsoon rainfall , 1999 .

[143]  J. Mitrovica,et al.  Postglacial sea-level change on a rotating Earth , 1998 .

[144]  C. Wunsch,et al.  Atmospheric loading and the oceanic “inverted barometer” effect , 1997 .

[145]  R. Greatbatch A note on the representation of steric sea level in models that conserve volume rather than mass , 1994 .

[146]  A. J. Clarke,et al.  Interannual Sea Level in the Northern and Eastern Indian Ocean , 1994 .

[147]  W. Peltier,et al.  On postglacial geoid subsidence over the equatorial oceans , 1991 .

[148]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[149]  Harry L. Bryden,et al.  New polynomials for thermal expansion, adiabatic temperature gradient and potential temperature of sea water , 1973 .

[150]  A. E. Gill,et al.  The theory of the seasonal variability in the ocean , 1973 .

[151]  Christopher,et al.  Evaluating Model Simulations of Twentieth-Century Sea Level Rise. Part I: Global Mean Sea Level Change , 2017 .

[152]  S. Sathyendranath,et al.  Causes of the Regional Variability in Observed Sea Level, Sea Surface Temperature and Ocean Colour Over the Period 1993–2011 , 2016, Surveys in Geophysics.

[153]  Gabriel A. Vecchi,et al.  Enhanced warming of the Northwest Atlantic Ocean under climate change , 2016 .

[154]  D. Stammer,et al.  Coastal sea level changes, observed and projected during the 20th and 21st century , 2015, Climatic Change.

[155]  Armin Köhl,et al.  Evaluation of the GECCO2 ocean synthesis: transports of volume, heat and freshwater in the Atlantic , 2015 .

[156]  James A. Carton,et al.  Sea level in ocean reanalyses and tide gauges , 2014 .

[157]  Eric Rignot,et al.  Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model , 2014 .

[158]  G. Jord Detection time for global and regional sea level trends and accelerations of Geophysical Research: Oceans , 2014 .

[159]  M. R. van den Broeke,et al.  Controls on short-term variations in Greenland glacier dynamics , 2013, Journal of Glaciology.

[160]  A. Mariotti,et al.  Decadal variability of net water flux at the Mediterranean Sea Gibraltar Strait , 2013 .

[161]  D. Gomis,et al.  On the interpretation of the steric and mass components of sea level variability: The case of the Mediterranean basin , 2012 .

[162]  C. Jones,et al.  Interactive comment on “ Development and evaluation of an Earth-system model – HadGEM 2 ” , 2011 .

[163]  John A. Church,et al.  Sea-Level Rise from the Late 19 th to the Early 21 st Century , 2011 .

[164]  P. Webster,et al.  Forcing Mechanisms of Sea Level Interannual Variability in the Bay of Bengal , 2002 .

[165]  H. Bryden,et al.  Exchange through the Strait of Gibraltar , 1994 .