Multidimensional Speckle Noise Model

One of the main problems of SAR imagery is the presence of speckle noise, originated by the inherent coherent nature of this type of systems. For one-dimensional SAR systems it has been demonstrated that speckle can be considered as a multiplicative noise term. Nevertheless, this simple model cannot be exported when multidimensional SAR imagery is addressed. This paper is devoted to present the latest advances into the definition of a multidimensional speckle noise model which does not depend on the data dimensionality. Speckle noise may be modeled by multiplicative and additive noise sources, whose combination is determined by the data's correlation structure. The validity of the proposed model is demonstrated by its application to a real L-band multidimensional SAR dataset acquired by the German ESAR sensor.

[1]  S. Quegan,et al.  A statistical description of polarimetric and interferometric synthetic aperture radar data , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[2]  Jong-Sen Lee,et al.  Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery , 1994, IEEE Trans. Geosci. Remote. Sens..

[3]  J. Goodman Statistical Optics , 1985 .

[4]  Kostas Papathanassiou,et al.  First demonstration of airborne SAR tomography using multibaseline L-band data , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[5]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..

[6]  Jong-Sen Lee,et al.  Speckle analysis and smoothing of synthetic aperture radar images , 1981 .

[7]  Carlos López-Martínez,et al.  Modeling and reduction of SAR interferometric phase noise in the wavelet domain , 2002, IEEE Trans. Geosci. Remote. Sens..

[8]  Gérard Letac,et al.  All Invariant Moments of the Wishart Distribution , 2004 .

[9]  S. Quegan,et al.  Understanding Synthetic Aperture Radar Images , 1998 .

[10]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[11]  R. Goldstein,et al.  Mapping small elevation changes over large areas: Differential radar interferometry , 1989 .

[12]  F. Ulaby,et al.  Radar polarimetry for geoscience applications , 1990 .

[13]  Konstantinos Papathanassiou,et al.  A new technique for noise filtering of SAR interferometric phase images , 1998, IEEE Trans. Geosci. Remote. Sens..

[14]  Eric Pottier,et al.  A new Alternative for SAR Imagery Coherence Estimation , 2004 .

[15]  L. Ferro-Famil,et al.  Surface parameter retrieval from polarimetric and multi-frequency SAR data , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[16]  John C. Curlander,et al.  Synthetic Aperture Radar: Systems and Signal Processing , 1991 .

[17]  Eric Pottier,et al.  Formulation and Validation of a Multidimensional SAR Data Speckle Noise Model , 2004 .

[18]  Kamal Sarabandi,et al.  Δk-radar equivalent of interferometric SAR's: a theoretical study for determination of vegetation height , 1997, IEEE Trans. Geosci. Remote. Sens..

[19]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[20]  Jong-Sen Lee,et al.  Polarimetric SAR speckle filtering and its implication for classification , 1999, IEEE Trans. Geosci. Remote. Sens..

[21]  E. Nezry,et al.  Adaptive speckle filters and scene heterogeneity , 1990 .

[22]  N. R. Goodman Statistical analysis based on a certain multivariate complex Gaussian distribution , 1963 .

[23]  K. Feigl,et al.  The displacement field of the Landers earthquake mapped by radar interferometry , 1993, Nature.

[24]  Konstantinos P. Papathanassiou,et al.  Polarimetric SAR interferometry , 1998, IEEE Trans. Geosci. Remote. Sens..

[25]  Kostas Papathanassiou,et al.  A new technique for noise filtering of SAR interferogram phase images , 1997, IGARSS'97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development.

[26]  K. Sarabandi Derivation of phase statistics from the Mueller matrix , 1992 .

[27]  J. Goodman Some fundamental properties of speckle , 1976 .

[28]  F. Henderson,et al.  Principles and Applications of Imaging Radar , 1998 .

[29]  Carlos López-Martínez,et al.  Polarimetric SAR speckle noise model , 2003, IEEE Trans. Geosci. Remote. Sens..

[30]  Irena Hajnsek,et al.  Inversion of surface parameters from polarimetric SAR , 2003, IEEE Trans. Geosci. Remote. Sens..