The Partition of Unity Method

A new finite element method is presented that features the ability to include in the finite element space knowledge about the partial differential equation being solved. This new method can therefore be more efficient than the usual finite element methods. An additional feature of the partition-of-unity method is that finite element spaces of any desired regularity can be constructed very easily. This paper includes a convergence proof of this method and illustrates its efficiency by an application to the Helmholtz equation for high wave numbers. The basic estimates for a posteriori error estimation for this new method are also proved. © 1997 by John Wiley & Sons, Ltd.

[1]  G. Szegő Über orthogonale Polynome, die zu einer gegebenen Kurve der komplexen Ebene gehören , 1921 .

[2]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[3]  Peter Henrici,et al.  A survey of I. N. Vekua's theory of elliptic partial differential equations with analytic coefficients , 1957 .

[4]  Stefan Bergman,et al.  Integral Operators In The Theory Of Linear Partial Differential Equations , 1962 .

[5]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[6]  D. H. McLain,et al.  Drawing Contours from Arbitrary Data Points , 1974, Comput. J..

[7]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[8]  T. Liszka,et al.  The finite difference method at arbitrary irregular grids and its application in applied mechanics , 1980 .

[9]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[10]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[11]  A. Pinkus n-Widths in Approximation Theory , 1985 .

[12]  I. Babuska,et al.  A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator , 1987 .

[13]  Joseph J Monaghan,et al.  An introduction to SPH , 1987 .

[14]  Ivo Babuska,et al.  Information-based numerical practice , 1987, J. Complex..

[15]  E. Kansa MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .

[16]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[17]  I. Babuska,et al.  Efficient preconditioning for the p -version finite element method in two dimensions , 1991 .

[18]  Ivo Babuška,et al.  The p -version of the finite element method for the elliptic boundary value problems with interfaces , 1992 .

[19]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[20]  Ivo Babuška,et al.  On the Regularity of Elasticity Problems with Piecewise Analytic Data , 1993 .

[21]  Roland W. Freund,et al.  A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems , 1993, SIAM J. Sci. Comput..

[22]  Ivo Babuška,et al.  The method of auxiliary mapping for the finite element solutions of elasticity problems containing singularities , 1993 .

[23]  T. Belytschko,et al.  Fracture and crack growth by element free Galerkin methods , 1994 .

[24]  David S. Burnett,et al.  A three‐dimensional acoustic infinite element based on a prolate spheroidal multipole expansion , 1994 .

[25]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[26]  T. Belytschko,et al.  A new implementation of the element free Galerkin method , 1994 .

[27]  T. Belytschko,et al.  Physical stabilization of the 4-node shell element with one point quadrature , 1994 .

[28]  I. Babuska,et al.  Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .

[29]  Ivo Babuska,et al.  The p and h-p Versions of the Finite Element Method, Basic Principles and Properties , 1994, SIAM Rev..

[30]  Ivo Babuška,et al.  A Generalized Finite Element Method for solving the Helmholtz equation in two dimensions with minimal pollution , 1995 .

[31]  P. Pinsky,et al.  A galerkin least-squares finite element method for the two-dimensional Helmholtz equation , 1995 .

[32]  K. R. Fyfe,et al.  ON THE USE OF VARIABLE ORDER INFINITE WAVE ENVELOPE ELEMENTS FOR ACOUSTIC RADIATION AND SCATTERING , 1995 .

[33]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[34]  Wing Kam Liu,et al.  Reproducing kernel particle methods for structural dynamics , 1995 .

[35]  Leszek Demkowicz,et al.  Solution of 3D-Laplace and Helmholtz equations in exterior domains using hp-infinite elements , 1996 .