Strictly local one-dimensional topological quantum error correction with symmetry-constrained cellular automata

Active quantum error correction on topological codes is one of the most promising routes to long-term qubit storage. In view of future applications, the scalability of the used decoding algorithms in physical implementations is crucial. In this work, we focus on the one-dimensional Majorana chain and construct a strictly local decoder based on a self-dual cellular automaton. We study numerically and analytically its performance and exploit these results to contrive a scalable decoder with exponentially growing decoherence times in the presence of noise. Our results pave the way for scalable and modular designs of actively corrected one-dimensional topological quantum memories.

[1]  Austin G. Fowler,et al.  Topological code Autotune , 2012, 1202.6111.

[2]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[3]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[4]  Shubhajit Roy Chowdhury,et al.  A high Speed 8 Transistor Full Adder Design Using Novel 3 Transistor XOR Gates , 2008 .

[5]  Austin G. Fowler,et al.  Minimum weight perfect matching of fault-tolerant topological quantum error correction in average O(1) parallel time , 2013, Quantum Inf. Comput..

[6]  Courtney G. Brell A proposal for self-correcting stabilizer quantum memories in 3 dimensions (or slightly less) , 2014, 1411.7046.

[7]  John M. Martinis,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2015, Nature.

[8]  S. Wolfram Statistical mechanics of cellular automata , 1983 .

[9]  Lawrence Gray,et al.  A Reader's Guide to Gacs's “Positive Rates” Paper , 2001 .

[10]  Robert Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2007, Physical review letters.

[11]  David Poulin,et al.  Fast decoders for topological quantum codes. , 2009, Physical review letters.

[12]  Siamak Taati Restricted Density Classification in One Dimension , 2015, Automata.

[13]  J. Harrington,et al.  Analysis of quantum error-correcting codes: symplectic lattice codes and toric codes , 2004 .

[14]  K. B. Whaley,et al.  Engineering autonomous error correction in stabilizer codes at finite temperature , 2016 .

[15]  Earl T. Campbell,et al.  Cellular-automaton decoders for topological quantum memories , 2014, npj Quantum Information.

[16]  Pedro P. B. de Oliveira,et al.  Conceptual Connections around Density Determination in Cellular Automata , 2013, Automata.

[17]  Kamil P Michnicki,et al.  3D topological quantum memory with a power-law energy barrier. , 2014, Physical review letters.

[18]  Kihong Park,et al.  Ergodicity and mixing rate of one-dimensional cellular automata , 1997 .

[19]  A. Kitaev,et al.  Quantum codes on a lattice with boundary , 1998, quant-ph/9811052.

[20]  Mathieu S. Capcarrère,et al.  Necessary conditions for density classification by cellular automata. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  A. Kitaev Unpaired Majorana fermions in quantum wires , 2000, cond-mat/0010440.

[22]  Helmut G Katzgraber,et al.  Error threshold for color codes and random three-body Ising models. , 2009, Physical review letters.

[23]  Alexander Shen,et al.  Fixed-point tile sets and their applications , 2009, J. Comput. Syst. Sci..

[24]  Austin G. Fowler,et al.  Experimental demonstration of topological error correction , 2009, Nature.

[25]  Peng Wang,et al.  Majority logic gate synthesis approaches for post-CMOS logic circuits: A review , 2014, IEEE International Conference on Electro/Information Technology.

[26]  Matthew B Hastings,et al.  Topological order at nonzero temperature. , 2011, Physical review letters.

[27]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[28]  Aditi Joshi,et al.  A Comparative Performance Analysis of Various CMOS Design Techniques for XOR and XNOR Circuits , 2017 .

[29]  Péter Gács Reliable Cellular Automata with Self-Organization , 1997, FOCS 1997.

[30]  Ying Li,et al.  Topological quantum computing with a very noisy network and local error rates approaching one percent , 2012, Nature Communications.

[31]  D. Loss,et al.  Majorana qubit decoherence by quasiparticle poisoning , 2012, 1204.3326.

[32]  G. Jullien,et al.  Circuit design based on majority gates for applications with quantum-dot cellular automata , 2004, Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004..

[33]  P. Zanardi,et al.  Virtual quantum subsystems. , 2001, Physical review letters.

[34]  Capcarrere,et al.  Two-state, r=1 Cellular Automaton that Classifies Density. , 1996, Physical review letters.

[35]  James R. Wootton Quantum memories and error correction , 2012, 1210.3207.

[36]  C. M. Marcus,et al.  Exponential protection of zero modes in Majorana islands , 2016, Nature.

[37]  Jiannis K. Pachos,et al.  Quantum memories at finite temperature , 2014, 1411.6643.

[38]  J. Eisert,et al.  Cellular automaton decoders of topological quantum memories in the fault tolerant setting , 2015, 1511.05579.

[39]  S. Bravyi,et al.  Quantum self-correction in the 3D cubic code model. , 2013, Physical review letters.

[40]  Péter Gács,et al.  Reliable computation with cellular automata , 1983, J. Comput. Syst. Sci..

[41]  J. Fritz,et al.  INTERACTING PARTICLE SYSTEMS (Grundlehren der mathematischen Wissenschaften, 276) , 1986 .

[42]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[43]  Ruedi Stoop,et al.  Computing with Probabilistic Cellular Automata , 2009, ICANN.

[44]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[45]  Nazim Fatès,et al.  Stochastic Cellular Automata Solutions to the Density Classification Problem , 2012, Theory of Computing Systems.

[46]  D. DiVincenzo,et al.  Majorana Braiding with Thermal Noise. , 2015, Physical review letters.

[47]  Adam C. Whiteside,et al.  Towards practical classical processing for the surface code: Timing analysis , 2012, 1202.5602.

[48]  A. Toom,et al.  Chapter 4 CELLULAR AUTOMATA WITH ERRORS: PROBLEMS for STUDENTS of PROBABILITY , 2005 .

[49]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[50]  Stephen Wolfram,et al.  Theory and Applications of Cellular Automata , 1986 .

[51]  J. Preskill,et al.  Confinement Higgs transition in a disordered gauge theory and the accuracy threshold for quantum memory , 2002, quant-ph/0207088.

[52]  Paula Gonzaga Sá,et al.  The Gacs-Kurdyumov-Levin automaton revisited , 1992 .

[53]  C. Castelnovo,et al.  Entanglement and topological entropy of the toric code at finite temperature , 2007, 0704.3616.

[54]  Barbara M. Terhal,et al.  Majorana fermion codes , 2010, 1004.3791.

[55]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[56]  M. Freedman,et al.  Scalable designs for quasiparticle-poisoning-protected topological quantum computation with Majorana zero modes , 2016, 1610.05289.

[57]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[58]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[59]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[60]  H. F. Chau,et al.  ONE DIMENSIONAL nARY DENSITY CLASSIFICATION USING TWO CELLULAR AUTOMATON RULES , 1999 .

[61]  J. G. Bryan,et al.  Introduction to probability and random variables , 1961 .

[62]  H. Fuks Solution of the density classification problem with two cellular automata rules , 1997, comp-gas/9703001.

[63]  Land,et al.  No perfect two-state cellular automata for density classification exists. , 1995, Physical review letters.

[64]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[65]  Moshe Sipper,et al.  A Simple Cellular Automaton that Solves the Density and Ordering Problems , 1998 .

[66]  H. Fuks Nondeterministic density classification with diffusive probabilistic cellular automata. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.