An Integrated Approach to Text and Image Retrieval- The Lowlands Team at Trecvid 2005

Our main focus for this year was on setting up a flexible retrieval environment rather than on evaluating novel video retrieval approaches. In this structured abstract the submitted runs are briefly described. High-level feature extraction We experimented with feature detectors based on visual information only, and com pared Weibull-based and GMM-based detectors. -- LL-HF-WB-VisOnly Region-based Weibull models, visual only -- LL-HF-WBNWC-VisOnly Extended region-based Weibull models, visual only -- LL-HF-GMMQGM-VisOnly GMM-based models, query generation variant -- LL-HF-GMMDGM-VisOnly GMM-based models, document generation variant We found large differences across topics. Some models are good for one topic other for the next. Future research has to show whether a combined approach is useful. Search In the search task we focused on a seamless integration of our visual and textual retrieval system, to allow for easy multimodal querying. We use the Nexi language for querying (see Section 3.1) and Ram for specifying visual retrieval models (see Section 3.3). -- M-A-1-LL-ram-text-1 manual text only run -- F-A-1-LL-ram-text-2 fully automatic text only run -- M-A-2-LL-ram-text-im-3 manual text + image run -- M-A-2-LL-ram-text-feat-4 manual text + high-level feature run -- M-A-2-LL-ram-text-im-feat-5 manual text + image + high-level feature run -- F-A-2-LL-ram-text-im-6 fully automatic text + image run -- F-A-1-LL-tijahpsql-text-7 fully automatic text only run We experimented with a generic retrieval approach that used collection specific information only for training the high-level feature detectors. Runs making use of textual information perform around the median, adding visual information does not influence the results.

[1]  Djoerd Hiemstra,et al.  A Linguistically Motivated Probabilistic Model of Information Retrieval , 1998, ECDL.

[2]  Andrew Trotman,et al.  Narrowed Extended XPath I (NEXI) , 2004, INEX.

[3]  Nuno Vasconcelos,et al.  Bayesian models for visual information retrieval , 2000 .

[4]  Arnold W. M. Smeulders,et al.  c ○ 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands. A Six-Stimulus Theory for Stochastic Texture , 2002 .

[5]  Djoerd Hiemstra,et al.  The Lowlands' TREC Experiments 2005 , 2005, TREC.

[6]  Djoerd Hiemstra,et al.  Twenty-One at TREC7: Ad-hoc and Cross-Language Track , 1998, TREC.

[7]  Peter Boncz,et al.  UvA-DARE ( Digital Academic Repository ) Monet ; a next-Generation DBMS Kernel For Query-Intensive Applications , 2007 .

[8]  Djoerd Hiemstra,et al.  Conceptual Language Models for Context-Aware Text Retrieval , 2004, TREC.

[9]  Dennis Koelma,et al.  The MediaMill TRECVID 2008 Semantic Video Search Engine , 2008, TRECVID.

[10]  Djoerd Hiemstra,et al.  TIJAH: Embracing IR Methods in XML Databases , 2005, Information Retrieval.

[11]  Marcin Zukowski,et al.  MonetDB/X100 - A DBMS In The CPU Cache , 2005, IEEE Data Eng. Bull..

[12]  Djoerd Hiemstra,et al.  Score region algebra: building a transparent XML-R database , 2005, CIKM '05.

[13]  A. P. deVries,et al.  RAM: array processing over a relational DBMS , 2003 .

[14]  Christian Petersohn Fraunhofer HHI at TRECVID 2004: Shot Boundary Detection System , 2004, TRECVID.

[15]  Thijs Westerveld,et al.  Using generative probabilistic models for multimedia retrieval , 2005, SIGF.

[16]  Arnold W. M. Smeulders,et al.  Color Invariance , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Dan Suciu,et al.  Comprehension syntax , 1994, SGMD.

[18]  Djoerd Hiemstra,et al.  The Lowlands' TREC Experiments , 2006 .

[19]  A. P. deVries The Mirror DBMS at TREC-9 , 2000 .

[20]  A. P. de Vries,et al.  Generative probabilistic models for multimedia retrieval: query generation against document generation , 2005 .