Strong stability of discrete-time systems

[1]  P. Henrici Bounds for iterates, inverses, spectral variation and fields of values of non-normal matrices , 1962 .

[2]  Norms and the spectral radius of matrices , 1962 .

[3]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[4]  R. Bellman,et al.  A Survey of Matrix Theory and Matrix Inequalities , 1965 .

[5]  G. P. Szegö,et al.  Stability theory of dynamical systems , 1970 .

[6]  Stephen Barnett,et al.  Matrices in control theory: with applications to linear programming, , 1971 .

[7]  Harley Flanders On the Norm and Spectral Radius , 1974 .

[8]  M. Goldberg,et al.  On matrices having equal spectral radius and spectral norm , 1974 .

[9]  B. Moore,et al.  Singular value analysis of linear systems , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[10]  Lars Pernebo,et al.  Balanced systems and model reduction , 1979, 1979 18th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[11]  L. Silverman,et al.  Model reduction via balanced state space representations , 1982 .

[12]  Gene H. Golub,et al.  Matrix computations , 1983 .

[13]  M. Marcus,et al.  A Survey of Matrix Theory and Matrix Inequalities , 1965 .

[14]  R. Sivan,et al.  Inverse Radial Matrices and Maximal Stability Robustness , 1990 .

[15]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[16]  Michael G. Safonov,et al.  Positive real Parrott theorem with application to LMI controller synthesis , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[17]  Nicholas J. Higham,et al.  Matrix Powers in Finite Precision Arithmetic , 1995, SIAM J. Matrix Anal. Appl..

[18]  Karolos M. Grigoriadis,et al.  A Unified Algebraic Approach To Control Design , 1997 .

[19]  Daniel Hershkowitz,et al.  Approximability by Weighted Norms of the Structured and VolumetricSingular Values of a Class of Nonnegative Matrices , 1997, SIAM J. Matrix Anal. Appl..

[20]  Nir Cohen,et al.  Convex invertible cones and the Lyapunov equation , 1997 .

[21]  Panos J. Antsaklis,et al.  Linear Systems , 1997 .

[22]  Daniel Hershkowitz,et al.  On cones and stability , 1998 .

[23]  Izchak Lewkowicz,et al.  Convex invertible cones of matrices — a unified framework for the equations of Sylvester, Lyapunov and Riccati , 1999 .

[24]  C. Scherer,et al.  Lecture Notes DISC Course on Linear Matrix Inequalities in Control , 1999 .

[25]  Michael Margaliot,et al.  Stability Analysis of Second-Order Switched Homogeneous Systems , 2002, SIAM J. Control. Optim..

[26]  Takao Watanabe,et al.  A unified algebraic approach to linear control design: Robert E. Skelton, Tetsuya Iwasaki and Karolos M. Grigoriadis; Copyright Taylor & Francis, 1998, ISBN: 0-7484-0592-5 , 2003, Autom..

[27]  Daniel Liberzon,et al.  Switching in Systems and Control , 2003, Systems & Control: Foundations & Applications.

[28]  D. O. Logofet Stronger-than-Lyapunov notions of matrix stability, or how "flowers" help solve problems in mathematical ecology , 2005 .

[29]  Elmar Plischke,et al.  Transient Effects of Linear Dynamical Systems , 2005 .

[30]  Robert Shorten,et al.  On the simultaneous diagonal stability of a pair of positive linear systems , 2006 .

[31]  Diederich Hinrichsen,et al.  Mathematical Systems Theory I , 2006, IEEE Transactions on Automatic Control.

[32]  Nicos Karcanias,et al.  Strong stability of internal system descriptions , 2007, 2007 European Control Conference (ECC).

[33]  George Papadakis,et al.  Minimizing transient energy growth in plane Poiseuille flow , 2008 .

[34]  Nicos Karcanias,et al.  Non-overshooting stabilisation via state and output feedback , 2010, Int. J. Control.

[35]  P. Olver Nonlinear Systems , 2013 .