Computation of stabilizing PI and PID controllers by using Kronecker summation method

Abstract In this paper, a new method for computation of all stabilizing PI controllers is given. The method is based on the plant model in time domain, and by using the extraordinary feature results from Kronecker sum operation, an explicit equation of control parameters defining the stability boundary in parametric space is obtained. Beyond stabilization, the method is used to shift all poles to a shifted half plane that guarantees a specified settling time of response. The stability regions of PID controllers are given in (kp, ki), (kp, kd) and (ki, kd) plane, respectively. The proposed method is also used to compute all the values of a PI controller stabilizing a control system with uncertain parameters. The proposed method is further extended to determine stability regions of uncertain coefficients of the system. Examples are given to show the benefits of the proposed method.

[1]  I. Ngamroo An optimization technique of robust load frequency stabilizer for superconducting magnetic energy storage , 2005 .

[2]  D. P. Atherton,et al.  Automatic tuning of optimum PID controllers , 1993 .

[3]  M. K. El-Sherbiny,et al.  Efficient fuzzy logic load-frequency controller , 2002 .

[4]  Chuanwen Jiang,et al.  PID controller parameters optimization of hydro-turbine governing systems using deterministic-chaotic-mutation evolutionary programming (DCMEP) , 2006 .

[5]  Roberto Tempo,et al.  Extreme point results for robust stabilization of interval plants with first-order compensators , 1992 .

[6]  William S. Levine,et al.  The Control Handbook , 2010 .

[7]  Joe Brewer,et al.  Kronecker products and matrix calculus in system theory , 1978 .

[8]  Neil Munro,et al.  Fast calculation of stabilizing PID controllers , 2003, Autom..

[9]  Issarachai Ngamroo,et al.  Optimal fuzzy logic-based PID controller for load–frequency control including superconducting magnetic energy storage units , 2008 .

[10]  Shankar P. Bhattacharyya,et al.  A linear programming characterization of all stabilizing PID controllers , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[11]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .

[12]  John L. Casti,et al.  Introduction to the theory and application of differential equations with deviating arguments , 1973 .

[13]  Engin Yesil,et al.  Self tuning fuzzy PID type load and frequency controller , 2004 .

[14]  Christopher V. Hollot,et al.  Robust stabilization of interval plants using lead or lag compensators , 1990 .

[15]  Kamel Guesmi,et al.  Systematic design approach of fuzzy PID stabilizer for DC–DC converters , 2008 .

[16]  A. T. Shenton,et al.  Frequency-domain design of pid controllers for stable and unstable systems with time delay , 1997, Autom..

[17]  B. Ghosh Some new results on the simultaneous stabilizability of a family of single input, single output systems , 1985 .

[18]  Shankar P. Bhattacharyya,et al.  Comments on "extreme point results for robust stabilization of interval plants with first order compensators" , 1993, IEEE Trans. Autom. Control..

[19]  Aniruddha Datta,et al.  Design of P, PI and PID controllers for interval plants , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[20]  S. Bhattacharyya,et al.  A new approach to feedback stabilization , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[21]  Nusret Tan,et al.  Computation of stabilizing PI and PID controllers , 2003, Proceedings of 2003 IEEE Conference on Control Applications, 2003. CCA 2003..

[22]  Mehmet Turan Soylemez,et al.  Fast Calculation of Stabilizing PID Controllers for Uncertain Parameter Systems , 2000 .

[23]  Naresh K. Sinha,et al.  Modern Control Systems , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[24]  Huang,et al.  Robust PID tuning strategy for uncertain plants based on the Kharitonov theorem , 2000, ISA transactions.

[25]  Celaleddin Yeroglu,et al.  Computation of Stabilizing PI and PID Controllers using the Stability Boundary Locus , 2006 .