Implications of grain size evolution on the seismic structure of the oceanic upper mantle

[1]  B. Romanowicz,et al.  Radial profiles of seismic attenuation in the upper mantle based on physical models , 2008 .

[2]  A. Dziewoński,et al.  Radially anisotropic shear velocity structure of the upper mantle globally and beneath North America , 2008 .

[3]  J. Gerald,et al.  Seismic properties of Anita Bay Dunite: an Exploratory Study of the Influence of Water , 2007 .

[4]  E. Parmentier,et al.  Effect of solid flow above a subducting slab on water distribution and melting at convergent plate boundaries , 2007 .

[5]  D. Helmberger,et al.  Trans-Pacific upper mantle shear velocity structure , 2007 .

[6]  Clinton P. Conrad,et al.  Global mantle flow and the development of seismic anisotropy: Differences between the oceanic and continental upper mantle , 2007 .

[7]  B. Evans,et al.  Paleowattmeters: A scaling relation for dynamically recrystallized grain size , 2007 .

[8]  G. Gaetani,et al.  Partitioning of water during melting of the Earth's upper mantle at H2O-undersaturated conditions , 2006 .

[9]  M. Hirschmann,et al.  Melting in the Earth's deep upper mantle caused by carbon dioxide , 2006, Nature.

[10]  D. Scott,et al.  Grain growth in partially molten olivine aggregates , 2006 .

[11]  D. Forsyth,et al.  Geophysical evidence from the MELT area for compositional controls on oceanic plates , 2005, Nature.

[12]  M. Hirschmann,et al.  Storage capacity of H2O in nominally anhydrous minerals in the upper mantle , 2005 .

[13]  I. Jackson,et al.  The seismological signature of temperature and grain size variations in the upper mantle , 2005 .

[14]  L. Stixrude,et al.  Mineralogy and elasticity of the oceanic upper mantle: Origin of the low‐velocity zone , 2005 .

[15]  M. Drury Dynamic recrystallization and strain softening of olivine aggregates in the laboratory and the lithosphere , 2005, Geological Society, London, Special Publications.

[16]  D. Forsyth,et al.  Variations in shear‐wave splitting in young Pacific seafloor , 2004 .

[17]  Roland Bürgmann,et al.  Evidence of power-law flow in the Mojave desert mantle , 2004, Nature.

[18]  Michael G. Braun Petrologic and microstructural constraints on focused melt transport in dunites and the rheology of the shallow mantle , 2004 .

[19]  D. Kohlstedt,et al.  Solubility of hydrogen in olivine: dependence on temperature and iron content , 2004 .

[20]  C. Langmuir,et al.  A hydrous melting and fractionation model for mid‐ocean ridge basalts: Application to the Mid‐Atlantic Ridge near the Azores , 2004 .

[21]  S. Acinas,et al.  Evidence of power-law flow in the Mojave desert mantle , 2004 .

[22]  S. Karato Mapping water content in the upper mantle , 2013 .

[23]  Noah S. Podolefsky,et al.  The anisotropic and rheological structure of the oceanic upper mantle from a simple model of plate shear , 2003 .

[24]  Thorsten W. Becker,et al.  Comparison of azimuthal seismic anisotropy from surface waves and finite strain from global mantle-circulation models , 2003 .

[25]  D. Kohlstedt,et al.  Chemistry of grain boundaries in mantle rocks , 2003 .

[26]  P. Kelemen,et al.  Extreme chemical variability as a consequence of channelized melt transport , 2003 .

[27]  L. Montési,et al.  Grain size evolution and the rheology of ductile shear zones: from laboratory experiments to postseismic creep , 2003 .

[28]  E. Parmentier,et al.  Influence of grain size evolution on convective instability , 2003 .

[29]  G. Rossman,et al.  Hydroxide in olivine: A quantitative determination of the absolute amount and calibration of the IR spectrum , 2003 .

[30]  Charles A. Williams,et al.  Reassessment of pore shapes in microstructurally equilibrated rocks, with implications for permeability of the upper mantle , 2003 .

[31]  J. Gerald,et al.  Grain-size-sensitive seismic wave attenuation in polycrystalline olivine , 2002 .

[32]  J. Woodhouse,et al.  The Q structure of the upper mantle: Constraints from Rayleigh wave amplitudes , 2002 .

[33]  R. Cooper Seismic wave attenuation: Energy dissipation in viscoelastic crystalline solids , 2002 .

[34]  J. Montagner,et al.  The unique dynamics of the Pacific Hemisphere mantle and its signature on seismic anisotropy , 2001 .

[35]  I. Jackson,et al.  High-temperature viscoelasticity of fine-grained polycrystalline olivine , 2001 .

[36]  C. Spiers,et al.  Experimental investigation into the microstructural and mechanical evolution of phyllosilicate-bearing fault rock under conditions favouring pressure solution , 2001 .

[37]  M. Richards,et al.  Role of a low‐viscosity zone in stabilizing plate tectonics: Implications for comparative terrestrial planetology , 2001 .

[38]  B. Evans,et al.  A few remarks on the kinetics of static grain growth in rocks , 2001 .

[39]  C. Spiers,et al.  Grain size reduction by dynamic recrystallization: can it result in major rheological weakening? , 2001 .

[40]  G. Choblet,et al.  Mantle upwelling and melting beneath slow spreading centers: effects of variable rheology and melt productivity , 2001 .

[41]  E. Parmentier,et al.  The effects of deep damp melting on mantle flow and melt generation beneath mid-ocean ridges , 2000 .

[42]  R. Cooper,et al.  Low-frequency shear attenuation in polycrystalline olivine: Grain boundary diffusion and the physical significance of the Andrade model for viscoelastic rheology , 1998 .

[43]  C. Peach,et al.  On dynamic recrystallization during solid state flow: Effects of stress and temperature , 1998 .

[44]  C. Wolfe,et al.  Shear-wave splitting and implications for mantle flow beneath the MELT region of the east pacific rise , 1998, Science.

[45]  T. Jordan,et al.  Seismic structure of the upper mantle in a central Pacific corridor , 1996 .

[46]  Greg Hirth,et al.  Water in the oceanic upper mantle: implications for rheology , 1996 .

[47]  F. Pollitz,et al.  Viscosity structure beneath northeast Iceland , 1996 .

[48]  B. Romanowicz A global tomographic model of shear attenuation in the upper mantle , 1995 .

[49]  H. Wenk,et al.  Development of phyllonite from granodiorite: Mechanisms of grain-size reduction in the Santa Rosa mylonite zone, California , 1995 .

[50]  P. Michael Regionally distinctive sources of depleted MORB: Evidence from trace elements and H2O , 1995 .

[51]  S. Karato Effects of Water on Seismic Wave Velocities in the Upper Mantle , 1995 .

[52]  J. Gerald,et al.  Relationships between dynamically recrystallized grain size and deformation conditions in experimentally deformed olivine rocks , 1993 .

[53]  Patrick Wu,et al.  Rheology of the Upper Mantle: A Synthesis , 1993, Science.

[54]  S. Stein,et al.  A model for the global variation in oceanic depth and heat flow with lithospheric age , 1992, Nature.

[55]  Jean-Paul Montagner,et al.  Global upper mantle tomography of seismic velocities and anisotropies , 1991 .

[56]  Q. Bai,et al.  High-temperature creep of olivine single crystals, 1, mechanical results for buffered samples , 1991 .

[57]  Bradford H. Hager,et al.  Mantle Viscosity: A Comparison of Models from Postglacial Rebound and from the Geoid, Plate Driving Forces, and Advected Heat Flux , 1991 .

[58]  Enzo Boschi,et al.  Glacial isostasy, sea-level and mantle rheology , 1991 .

[59]  S. Karato Grain growth kinetics in olivine aggregates , 1989 .

[60]  D. Forsyth,et al.  The anisotropic structure of the upper mantle in the Pacific , 1989 .

[61]  J. Delaney,et al.  Infrared spectroscopic measurements of CO2 and H2O in Juan de Fuca Ridge basaltic glasses , 1988 .

[62]  M. Ashby,et al.  On Dynamic Recrystallization , 1987 .

[63]  Nikolaus von Bargen,et al.  Permeabilities, interfacial areas and curvatures of partially molten systems: Results of numerical computations of equilibrium microstructures , 1986 .

[64]  D. McKenzie,et al.  The existence of a thin low-viscosity layer beneath the lithosphere , 1986 .

[65]  H. C. Heard,et al.  Mineral and rock deformation : laboratory studies : the Paterson volume , 1986 .

[66]  S. Karato Grain-size distribution and rheology of the upper mantle , 1984 .

[67]  Richard Peltier,et al.  Dynamics of the Ice Age Earth , 1982 .

[68]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[69]  R. Coleman,et al.  Cross Section Through the Peridotite in the Samail Ophiolite , 1981 .

[70]  D. Anderson,et al.  A model of dislocation-controlled rheology for the mantle , 1981, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[71]  N. Carter,et al.  Rheology of the upper mantle: Inferences from peridotite xenoliths , 1980 .

[72]  D. L. Anderson,et al.  Dislocations and Nonelastic Processes in the Mantle , 1980 .

[73]  S. Karato,et al.  Dynamic recrystallization of olivine single crystals during high‐temperature creep , 1980 .

[74]  J. Poirier,et al.  Deformation induced recrystallization of minerals , 1979 .

[75]  B. Parsons,et al.  An analysis of the variation of ocean floor bathymetry and heat flow with age , 1977 .

[76]  R. Twiss Theory and applicability of a recrystallized grain size paleopiezometer , 1977 .

[77]  D. Turcotte,et al.  Studies of finite amplitude non‐Newtonian thermal convection with application to convection in the Earth's mantle , 1976 .

[78]  M. F. Ashby,et al.  On the rheology of the upper mantle , 1973 .

[79]  P. Feltham,et al.  On the Creep of Crystals , 1971, September 16.

[80]  F. Birch The velocity of compressional waves in rocks to 10 kilobars: 1. , 1960 .

[81]  R. Verma,et al.  Elasticity of some high-density crystals , 1960 .

[82]  B. Gutenberg On the layer of relatively low wave velocity at a depth of about 80 kilometers , 1948 .

[83]  G. W. Lamplugh,et al.  The Geological Society of London , 1961, Nature.