Erbium-doped Si nanocrystals: optical properties and electroluminescent devices

Abstract In the last decade, a strong effort has been devoted towards the achievement of efficient light emission from silicon. Among the different approaches, rare-earth doping and quantum confinement in Si nanostructures have shown great potentialities. In the present work, the synthesis and properties of low-dimensional silicon structures in SiO 2 will be analyzed. All of these structures present a strong room temperature optical emission, tunable in the visible by changing the crystal size. Moreover, Si nanocrystals (nc) embedded in SiO 2 together with Er ions show a strong coupling with the rare earth. Indeed each Si nc absorbs energy which is then preferentially transferred to the nearby Er ions. The signature of this interaction is the strong increase of the excitation cross section for an Er ion in the presence of Si nc with respect to a pure oxide host. We will show the properties of Er-doped Si nc embedded within Si/SiO 2 Fabry–Perot microcavities. Very narrow, intense and highly directional luminescence peaks can be obtained. Moreover, the electroluminescence (EL) properties of Si nc and Er-doped Si nc in MOS devices are investigated. It is shown that an efficient carrier injection at low voltages and quite intense room temperature EL signals can be achieved, due to the sensitizing action of Si nc for the rare earth. These data will be presented and the impact on future applications discussed.

[1]  A. Polman,et al.  Erbium implanted thin film photonic materials , 1997 .

[2]  Mk Meint Smit,et al.  Upconversion in Er-implanted Al2O3 waveguides , 1996 .

[3]  Leonard C. Feldman,et al.  Giant enhancement of luminescence intensity in Er‐doped Si/SiO2 resonant cavities , 1992 .

[4]  Fabio Iacona,et al.  Correlation between luminescence and structural properties of Si nanocrystals , 2000 .

[5]  A. G. Cullis,et al.  The structural and luminescence properties of porous silicon , 1997 .

[6]  Lorenzo Pavesi,et al.  Controlled photon emission in porous silicon microcavities , 1995 .

[7]  F. Priolo,et al.  Excitation and non-radiative de-excitation processes in Er-doped Si nanocrystals , 2001 .

[8]  G. Franzò,et al.  The excitation mechanism of rare-earth ions in silicon nanocrystals , 1999 .

[9]  J. Jorné,et al.  Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen , 1999 .

[10]  Kazuo Saitoh,et al.  Visible photoluminescence in Si+‐implanted silica glass , 1994 .

[11]  Francesco Priolo,et al.  Quantum confinement and recombination dynamics in silicon nanocrystals embedded in Si/SiO2 superlattices , 2000 .

[12]  Alberto Carnera,et al.  Room‐temperature electroluminescence from Er‐doped crystalline Si , 1994 .

[13]  D. J. Lockwood,et al.  Quantum confinement and light emission in SiO2/Si superlattices , 1995, Nature.

[14]  P. D. Townsend,et al.  Optical properties of silicon nanoclusters fabricated by ion implantation , 1998 .

[15]  Minoru Fujii,et al.  Resonant excitation of Er3+ by the energy transfer from Si nanocrystals , 2001 .

[16]  Zheng-Hong Lu,et al.  Quantum confined luminescence in Si/SiO2 superlattices. , 1996 .

[17]  Maria Miritello,et al.  Excitation and de-excitation properties of silicon quantum dots under electrical pumping , 2002 .

[18]  F. Priolo,et al.  Electroluminescence of silicon nanocrystals in MOS structures , 2002 .

[19]  Francesco Priolo,et al.  Silicon nanocrystals and Er3+ ions in an optical microcavity , 2001 .

[20]  D. Zahn,et al.  Self-trapped exciton recombination in silicon nanocrystals , 2001 .

[21]  F. Priolo,et al.  High efficiency and fast modulation of Er‐doped light emitting Si diodes , 1996 .

[22]  Domenico Pacifici,et al.  Role of the energy transfer in the optical properties of undoped and Er-doped interacting Si nanocrystals , 2001 .

[23]  Harry A. Atwater,et al.  Defect‐related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2 , 1996 .

[24]  Harry A. Atwater,et al.  Tuning the emission wavelength of Si nanocrystals in SiO2 by oxidation , 1998 .

[25]  D. Mcbranch,et al.  Initial carrier relaxation dynamics in ion-implanted Si nanocrystals: Femtosecond transient absorption study , 1998 .

[26]  Recombination of self-trapped excitons in silicon nanocrystals grown in silicon oxide , 2000 .

[27]  Keiichi Yamamoto,et al.  1.54 μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to Er3+ , 1997 .

[28]  Xinwei Zhao,et al.  Time response of 1.54 μm emission from highly Er-doped nanocrystalline Si thin films prepared by laser ablation , 1999 .

[29]  A. Galeckas,et al.  Analysis of the stretched exponential photoluminescence decay from nanometer-sized silicon crystals in SiO2 , 1999 .

[30]  M. Fujii,et al.  Photoluminescence from SiO2 films containing Si nanocrystals and Er: Effects of nanocrystalline size on the photoluminescence efficiency of Er3+ , 1998 .

[31]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[32]  Domenico Pacifici,et al.  Luminescence properties of Si nanocrystals embedded in optical microcavities , 2002 .

[33]  Takeda,et al.  Visible photoluminescence from oxidized Si nanometer-sized spheres: Exciton confinement on a spherical shell. , 1993, Physical review. B, Condensed matter.

[34]  Salvatore Coffa,et al.  Excitation and nonradiative deexcitation processes of Er 3 + in crystalline Si , 1998 .

[35]  Domenico Pacifici,et al.  Er3+ ions–Si nanocrystals interactions and their effects on the luminescence properties , 2000 .

[36]  J. Budai,et al.  Growth of Ge, Si, and SiGe nanocrystals in SiO2 matrices , 1995 .