Multivariate symmetric refinable functions and function vectors

For any symmetry group ℋ, any appropriate matrix dilation (compatible with ℋ) and any appropriate symmetry center c we give an explicit method for the construction of ℋ-symmetric with respect to the center c refinable masks which have sum rule of an arbitrary order n. Moreover, we give a description of all these masks. For any symmetry group ℋ, any appropriate matrix dilation (compatible with ℋ) and any appropriate row of symmetry centers C we give two explicit methods for the construction of ℋ-symmetric with respect to the row of centers C refinable matrix masks which have sum rule of an arbitrary order n. A description of all such matrix masks is also presented.

[1]  Bin Han,et al.  Analysis and Construction of Multivariate Interpolating Refinable Function Vectors , 2009 .

[2]  Charles A. Micchelli,et al.  Using the refinement equation for the construction of pre-wavelets , 1991, Numerical Algorithms.

[3]  Maria Skopina On construction of multivariate wavelets with vanishing moments , 2006 .

[4]  Charles A. Micchelli,et al.  Using the Refinement Equations for the Construction of Pre-Wavelets II: Powers of Two , 1991, Curves and Surfaces.

[5]  Nira Dyn,et al.  Decompositions of trigonometric polynomials with applications to multivariate subdivision schemes , 2009, Adv. Comput. Math..

[6]  Karsten Koch Multivariate Symmetric Interpolating Scaling Vectors with Duals , 2009 .

[7]  B. Han Symmetric multivariate orthogonal refinable functions , 2004 .

[8]  A. Krivoshein Symmetric interpolatory dual wavelet frames , 2014, 1409.0295.

[9]  A. Krivoshein On construction of multivariate symmetric MRA-based wavelets☆ , 2012, 1201.2606.

[10]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[11]  Carlos Cabrelli,et al.  Accuracy of several multidimensional refinable distributions , 2000 .

[12]  Qingtang Jiang,et al.  Bi-frames with 4-fold axial symmetry for quadrilateral surface multiresolution processing , 2010, J. Comput. Appl. Math..

[13]  Qingtang Jiang,et al.  Biorthogonal wavelets with 4-fold axial symmetry for quadrilateral surface multiresolution processing , 2011, Adv. Comput. Math..

[14]  Qingtang Jiang,et al.  Matrix-valued symmetric templates for interpolatory surface subdivisions: I. Regular vertices , 2005 .

[15]  Peter J. Cameron,et al.  Permutation Groups: Frontmatter , 1999 .

[16]  Bin Han,et al.  Vector cascade algorithms and refinable function vectors in Sobolev spaces , 2003, J. Approx. Theory.

[17]  Maria Skopina,et al.  Symmetric Multivariate Wavelets , 2009, Int. J. Wavelets Multiresolution Inf. Process..

[18]  Bin Han,et al.  Computing the Smoothness Exponent of a Symmetric Multivariate Refinable Function , 2002, SIAM J. Matrix Anal. Appl..

[19]  Bin Han Symmetric orthogonal filters and wavelets with linear-phase moments , 2011, J. Comput. Appl. Math..