Contribution of Antarctica to past and future sea-level rise

[1]  Gaël Durand,et al.  Potential sea-level rise from Antarctic ice-sheet instability constrained by observations , 2015, Nature.

[2]  Karen E. Frey,et al.  Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios , 2015 .

[3]  D. Pollard,et al.  Sea-level feedback lowers projections of future Antarctic Ice-Sheet mass loss , 2015, Nature Communications.

[4]  A. Levermann,et al.  Collapse of the West Antarctic Ice Sheet after local destabilization of the Amundsen Basin , 2015, Proceedings of the National Academy of Sciences.

[5]  N. Golledge,et al.  The multi-millennial Antarctic commitment to future sea-level rise , 2015, Nature.

[6]  K. Caldeira,et al.  Combustion of available fossil fuel resources sufficient to eliminate the Antarctic Ice Sheet , 2015, Science Advances.

[7]  S. Rahmstorf,et al.  Sea-level rise due to polar ice-sheet mass loss during past warm periods , 2015, Science.

[8]  M. R. van den Broeke,et al.  Dynamic thinning of glaciers on the Southern Antarctic Peninsula , 2015, Science.

[9]  D. Goldberg,et al.  Effect of near‐terminus subglacial hydrology on tidewater glacier submarine melt rates , 2015 .

[10]  R. DeConto,et al.  Ice sheet model dependency of the simulated Greenland Ice Sheet in the mid-Pliocene , 2015 .

[11]  Richard B. Alley,et al.  Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure , 2015 .

[12]  S. Aoki,et al.  Multidecadal warming of Antarctic waters , 2014, Science.

[13]  Dorothée Vallot,et al.  First-principles Simulations and the Criticality of Calving Glaciers : Termini of calving glaciers as self-organized critical systems , 2014 .

[14]  T. L. Rasmussen,et al.  Temporal and spatial structure of multi-millennial temperature changes at high latitudes during the Last Interglacial , 2014 .

[15]  R. DeConto,et al.  Impact of reduced Arctic sea ice on Greenland ice sheet variability in a warmer than present climate , 2014 .

[16]  B. Scheuchl,et al.  Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011 , 2014 .

[17]  B. Smith,et al.  Marine Ice Sheet Collapse Potentially Under Way for the Thwaites Glacier Basin, West Antarctica , 2014, Science.

[18]  C. Kissel,et al.  Rapid Reductions in North Atlantic Deep Water During the Peak of the Last Interglacial Period , 2014, Science.

[19]  A. Payne,et al.  Retreat of Pine Island Glacier controlled by marine ice-sheet instability , 2014 .

[20]  Maureen E. Raymo,et al.  The Mid-Pliocene sea-level conundrum: Glacial isostasy, eustasy and dynamic topography , 2014 .

[21]  A. Jenkins,et al.  Strong Sensitivity of Pine Island Ice-Shelf Melting to Climatic Variability , 2014, Science.

[22]  M. R. van den Broeke,et al.  Firn air depletion as a precursor of Antarctic ice-shelf collapse , 2014, Journal of Glaciology.

[23]  D. Macayeal,et al.  Breakup of the Larsen B Ice Shelf triggered by chain reaction drainage of supraglacial lakes , 2013 .

[24]  S. Jacobs,et al.  Diverse calving patterns linked to glacier geometry , 2013 .

[25]  Robert B. Dunbar,et al.  Dynamic behaviour of the East Antarctic ice sheet during Pliocene warmth , 2013 .

[26]  Jody M. Webster,et al.  Ice Sheet Collapse Following a Prolonged Period of Stable Sea Level during the Last Interglacial , 2013 .

[27]  Geoffrey M. Hargreaves,et al.  Onset of deglacial warming in West Antarctica driven by local orbital forcing , 2013, Nature.

[28]  F. Pattyn,et al.  Future sea-level rise from Greenland’s main outlet glaciers in a warming climate , 2013, Nature.

[29]  Harihar Rajaram,et al.  Evaluation of cryo‐hydrologic warming as an explanation for increased ice velocities in the wet snow zone, Sermeq Avannarleq, West Greenland , 2013 .

[30]  Kenji Kawamura,et al.  Eemian interglacial reconstructed from a Greenland folded ice core , 2013, Nature.

[31]  Chao Li,et al.  Deep-ocean heat uptake and equilibrium climate response , 2013, Climate Dynamics.

[32]  P. Clark,et al.  Ice sheet sources of sea level rise and freshwater discharge during the last deglaciation , 2012 .

[33]  David Pollard,et al.  Description of a hybrid ice sheet-shelf model, and application to Antarctica , 2012 .

[34]  Bo Sun,et al.  Bedmap2: improved ice bed, surface and thickness datasets for Antarctica , 2012 .

[35]  R. DeConto,et al.  Reprint of: Modeling Antarctic ice sheet and climate variations during Marine Isotope Stage 31☆ , 2012 .

[36]  David Pollard,et al.  A simple inverse method for the distribution of basal sliding coefficients under ice sheets, applied to Antarctica , 2012 .

[37]  J. Annan,et al.  Quantification of the Greenland ice sheet contribution to Last Interglacial sea level rise , 2012 .

[38]  Ian M. Howat,et al.  Seasonal to decadal scale variations in the surface velocity of Jakobshavn Isbrae, Greenland: Observation and model-based analysis , 2012 .

[39]  S. Levitus,et al.  World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010 , 2012 .

[40]  Frank Kauker,et al.  Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redirected coastal current , 2012, Nature.

[41]  R. DeConto,et al.  Modeling Antarctic ice sheet and climate variations during Marine Isotope Stage 31 , 2012 .

[42]  Andrew A. Kulpecz,et al.  High tide of the warm Pliocene: Implications of global sea level for Antarctic deglaciation , 2012 .

[43]  D. Vaughan,et al.  Antarctic ice-sheet loss driven by basal melting of ice shelves , 2012, Nature.

[44]  M. Raymo,et al.  Collapse of polar ice sheets during the stage 11 interglacial , 2012, Nature.

[45]  C. C. Walker,et al.  Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[46]  K. Calvin,et al.  The RCP greenhouse gas concentrations and their extensions from 1765 to 2300 , 2011 .

[47]  J. Overpeck,et al.  The role of ocean thermal expansion in Last Interglacial sea level rise , 2011 .

[48]  A. Vieli,et al.  A physically based calving model applied to marine outlet glaciers and implications for the glacier dynamics , 2010, Journal of Glaciology.

[49]  Andreas Schmittner,et al.  Evaluation of a present-day climate simulation with a new coupled atmosphere-ocean model GENMOM , 2010 .

[50]  Antony J. Payne,et al.  An improved Antarctic dataset for high resolution numerical ice sheet models (ALBMAP v1) , 2010 .

[51]  Harihar Rajaram,et al.  Cryo‐hydrologic warming: A potential mechanism for rapid thermal response of ice sheets , 2010 .

[52]  E. Bueler,et al.  The Potsdam Parallel Ice Sheet Model (PISM-PIK) – Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet , 2010 .

[53]  T. Stocker,et al.  Interhemispheric coupling, the West Antarctic Ice Sheet and warm Antarctic interglacials , 2010 .

[54]  A. Mackensen,et al.  Alkenone and boron based Pliocene pCO2 records , 2010 .

[55]  R. Kopp,et al.  Probabilistic assessment of sea level during the last interglacial stage , 2009, Nature.

[56]  M. Tedesco,et al.  An updated Antarctic melt record through 2009 and its linkages to high‐latitude and tropical climate variability , 2009 .

[57]  V. Brovkin,et al.  Atmospheric lifetime of fossil-fuel carbon dioxide , 2009 .

[58]  David Pollard,et al.  Modelling West Antarctic ice sheet growth and collapse through the past five million years , 2009, Nature.

[59]  G. Kuhn,et al.  Obliquity-paced Pliocene West Antarctic ice sheet oscillations , 2009, Nature.

[60]  Ian M. Howat,et al.  Continued evolution of Jakobshavn Isbrae following its rapid speedup , 2008 .

[61]  David M. Holland,et al.  The Response of Ice Shelf Basal Melting to Variations in Ocean Temperature , 2008 .

[62]  T. Stocker,et al.  High-resolution carbon dioxide concentration record 650,000–800,000 years before present , 2008, Nature.

[63]  Ken Caldeira,et al.  Stabilizing climate requires near‐zero emissions , 2008 .

[64]  Peter Huybers,et al.  Unlocking the mysteries of the ice ages , 2008, Nature.

[65]  M. McCulloch,et al.  Global sea-level fluctuations during the Last Interglaciation (MIS 5e) , 2007 .

[66]  Raquel V. Francisco,et al.  Regional Climate Modeling for the Developing World: The ICTP RegCM3 and RegCNET , 2007 .

[67]  C. Schoof Ice sheet grounding line dynamics: Steady states, stability, and hysteresis , 2007 .

[68]  D. Benn,et al.  Calving processes and the dynamics of calving glaciers , 2007 .

[69]  M. Kageyama,et al.  The Deep Ocean During the Last Interglacial Period , 2007, Science.

[70]  Peter Huybers,et al.  Early Pleistocene Glacial Cycles and the Integrated Summer Insolation Forcing , 2006, Science.

[71]  J. Overpeck,et al.  Paleoclimatic Evidence for Future Ice-Sheet Instability and Rapid Sea-Level Rise , 2006, Science.

[72]  S. Levitus,et al.  World ocean atlas 2005. Vol. 1, Temperature , 2006 .

[73]  T. Stocker,et al.  Atmospheric Methane and Nitrous Oxide of the Late Pleistocene from Antarctic Ice Cores , 2005, Science.

[74]  A. Shepherd,et al.  Warm ocean is eroding West Antarctic Ice Sheet , 2004 .

[75]  G. Danabasoglu,et al.  The Community Climate System Model Version 4 , 2011 .

[76]  T. Scambos,et al.  Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica , 2004 .

[77]  James J. Hack,et al.  Response of Climate Simulation to a New Convective Parameterization in the National Center for Atmospheric Research Community Climate Model (CCM3) , 1998 .

[78]  David Pollard,et al.  Greenland and Antarctic Mass Balances for Present and Doubled Atmospheric CO2 from the GENESIS Version-2 Global Climate Model , 1997 .

[79]  E. Maier‐Reimer,et al.  Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration , 1994, Nature.

[80]  André Berger,et al.  Long-term variations of daily insolation and Quaternary climatic changes , 1978 .

[81]  J. H. Mercer West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster , 1978, Nature.