Sustained ophthalmic delivery of ofloxacin from a pH triggered in situ gelling system.

[1]  L. Nielsen,et al.  Bioadhesive drug delivery systems: I. Characterisation of mucoadhesive properties of systems based on glyceryl mono-oleate and glyceryl monolinoleate , 1998 .

[2]  J. Blanchard,et al.  In vitro evaluation of pluronic F127-based controlled-release ocular delivery systems for pilocarpine. , 1998, Journal of pharmaceutical sciences.

[3]  E. Lobel,et al.  A novel in situ-forming ophthalmic drug delivery system from alginates undergoing gelation in the eye , 1997 .

[4]  E. Topp,et al.  Gellan-based systems for ophthalmic sustained delivery of methylprednisolone , 1993 .

[5]  P. Edman Biopharmaceutics of Ocular Drug Delivery , 1992 .

[6]  A. Mitra,et al.  Kinetics of aspirin hydrolysis in aqueous solutions and gels of poloxamines (Tetronic 1508)—Influence of microenvironment , 1991 .

[7]  R. Schoenwald Ocular drug delivery. Pharmacokinetic considerations. , 1990, Clinical pharmacokinetics.

[8]  A. Rozier,et al.  Gelrite®: A novel, ion-activated, in-situ gelling polymer for ophthalmic vehicles. Effect on bioavailability of timolol , 1989 .

[9]  R. Gurny,et al.  Ocular therapy with nanoparticulate systems for controlled drug delivery , 1985 .

[10]  Gordon L. Amidon,et al.  Thermodynamic studies on the gel-sol transition of some pluronic polyols , 1984 .

[11]  Susan C. Miller,et al.  Effect of poloxamer 407 gel on the miotic activity of pilocarpine nitrate in rabbits , 1982 .

[12]  R. Gurny Preliminary study of prolonged acting drug delivery system for the treatment of glaucoma. , 1981, Pharmaceutica acta Helvetiae.

[13]  L. Desantis,et al.  Inlfuence of high-viscosity vehicles on miotic effect of pilocarpine. , 1978, Journal of pharmaceutical sciences.