Checkpointing Schemes for Adjoint Methods and Strongly Unsteady Flows
暂无分享,去创建一个
[1] A. Jameson,et al. Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .
[2] J. Peraire,et al. Finite Element Flux-Corrected Transport (FEM-FCT) for the Euler and Navier-Stokes equations , 1987 .
[3] Antony Jameson,et al. Aerodynamic design via control theory , 1988, J. Sci. Comput..
[4] K. Morgan,et al. FEM-FCT - Combining unstructured grids with high resolution. [Flux Corrected Transport , 1988 .
[5] A. Jameson. Optimum aerodynamic design using CFD and control theory , 1995 .
[6] Andreas Griewank,et al. Algorithm 799: revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation , 2000, TOMS.
[7] Andreas Griewank,et al. Advantages of Binomial Checkpointing for Memory-reduced Adjoint Calculations , 2004 .
[8] Rainald Löhner,et al. An adjoint‐based design methodology for CFD problems , 2004 .
[9] Qiqi Wang,et al. Minimal Repetition Dynamic Checkpointing Algorithm for Unsteady Adjoint Calculation , 2009, SIAM J. Sci. Comput..
[10] Rainald Löhner,et al. Adjoint-Based Design of Passive and Active Shock Mitigation Devices , 2010 .
[11] Rainald Löhner,et al. Adjoint methods for unsteady flows , 2011 .
[12] Rainald Löhner,et al. Timings of FEFLO on the SGI-Ice Machines , 2011 .