Multiscale boundary conditions in crystalline solids: Theory and application to nanoindentation

This paper presents a systematic approach to treating the interfaces between the localized (fine grain) and peripheral (coarse grain) domains in atomic scale simulations of crystalline solids. Based on Fourier analysis of regular lattices structures, this approach allows elimination of unnecessary atomic degrees of freedom over the coarse grain, without involving an explicit continuum model for the latter. The mathematical formulation involves compact convolution operators that relate displacements of the interface atoms and the adjacent atoms on the coarse grain. These operators are defined by geometry of the lattice structure, and interatomic potentials. Application and performance are illustrated on quasistatic nanoindentation simulations with a crystalline gold substrate. Complete atomistic resolution on the coarse grain is alternatively employed to give the benchmark solutions. The results are found to match well for the multiscale and the full atomistic simulations.

[1]  Pierre A Deymier,et al.  Concurrent multiscale model of an atomic crystal coupled with elastic continua , 2002 .

[2]  M. G. Salvadori,et al.  Numerical methods in engineering , 1955 .

[3]  Eduard G. Karpov,et al.  A Green's function approach to deriving non‐reflecting boundary conditions in molecular dynamics simulations , 2005 .

[4]  J. Q. Broughton,et al.  Concurrent coupling of length scales: Methodology and application , 1999 .

[5]  Harold S. Park,et al.  Three-dimensional bridging scale analysis of dynamic fracture , 2005 .

[6]  Robert E. Rudd,et al.  Concurrent Coupling of Length Scales in Solid State Systems , 2000 .

[7]  D. L. Dorofeev,et al.  On static analysis of finite repetitive structures by discrete Fourier transform , 2002 .

[8]  Eduard G. Karpov,et al.  Initial tension in randomly disordered periodic lattices , 2003 .

[9]  Michael Ortiz,et al.  Mixed Atomistic-Continuum Models of Material Behavior: The Art of Transcending Atomistics and Informing Continua , 2001 .

[10]  The height dependence of image contrast when imaging by non-contact AFM , 2000 .

[11]  Gregory J. Wagner,et al.  Coupling of atomistic and continuum simulations using a bridging scale decomposition , 2003 .

[12]  Harold S. Park,et al.  Non‐reflecting boundary conditions for atomistic, continuum and coupled atomistic/continuum simulations , 2005 .

[13]  Moshe B. Fuchs,et al.  Optimal design of infinite repetitive structures , 1999 .

[14]  D. E. Harrison Application of molecular dynamics simulations to the study of ion-bombarded metal surfaces , 1988 .

[15]  Harold S. Park,et al.  An introduction to computational nanomechanics and materials , 2004 .

[16]  Eduard G. Karpov,et al.  Domain reduction method for atomistic simulations , 2006, J. Comput. Phys..

[17]  Robert E. Rudd,et al.  COARSE-GRAINED MOLECULAR DYNAMICS AND THE ATOMIC LIMIT OF FINITE ELEMENTS , 1998 .

[18]  E. B. Tadmor,et al.  Quasicontinuum models of interfacial structure and deformation , 1998 .

[19]  Michael Ortiz,et al.  Mixed Atomistic and Continuum Models of Deformation in Solids , 1996 .

[20]  Harold S. Park,et al.  The bridging scale for two-dimensional atomistic/continuum coupling , 2005 .

[21]  Noam Bernstein,et al.  Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture , 1998 .

[22]  Eduard G. Karpov,et al.  Molecular dynamics boundary conditions for regular crystal lattices , 2004 .

[23]  Ronald E. Miller,et al.  Atomistic/continuum coupling in computational materials science , 2003 .

[24]  William A. Curtin,et al.  Multiscale plasticity modeling: coupled atomistics and discrete dislocation mechanics , 2004 .