Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 21/08/00 EVOLUTIONARY BINARY SEQUENCES FOR LOW- AND INTERMEDIATE-MASS X-RAY BINARIES

We present the results of a systematic study of the evolution of low- and intermediate-mass X-ray binaries (LMXBs and IMXBs). Using a standard Henyey-type stellar evolution code and a standard model for binary interactions, we have calculated 100 binary evolution sequences containing a neutron star and a normal-type companion star, where the initial mass of the secondary ranges from 0.6 to 7 M☉ and the initial orbital period from ~4 hr to ~100 days. This range samples the entire range of parameters one is likely to encounter for LMXBs and IMXBs. The sequences show an enormous variety of evolutionary histories and outcomes, where different mass transfer mechanisms dominate in different phases. Very few sequences resemble the classical evolution of cataclysmic variables, where the evolution is driven by magnetic braking and gravitational radiation alone. Many systems experience a phase of mass transfer on a thermal timescale and may briefly become detached immediately after this phase (for the more massive secondaries). In agreement with previous results (Tauris & Savonije 1999), we find that all sequences with (sub)giant donors up to ~2 M☉ are stable against dynamical mass transfer. Sequences where the secondary has a radiative envelope are stable against dynamical mass transfer for initial masses up to ~4 M☉. For higher initial masses, they experience a delayed dynamical instability after a stable phase of mass transfer lasting up to ~106 yr. Systems where the initial orbital period is just below the bifurcation period of ~18 hr evolve toward extremely short orbital periods (as short as ~10 minutes). For a 1 M☉ secondary, the initial period range that leads to the formation of ultracompact systems (with minimum periods less than ~40 minutes) is 13-18 hr. Since systems that start mass transfer in this period range are naturally produced as a result of tidal capture, this may explain the large fraction of ultracompact LMXBs observed in globular clusters. The implications of this study for our understanding of the population of X-ray binaries and the formation of millisecond pulsars are also discussed.

[1]  R. Romani,et al.  The Pulsar Content of Globular Clusters , 1990 .

[2]  F. Verbunt The formation of ultra-short period binaries in globular clusters , 1987 .

[3]  J. van Paradijs,et al.  On the Accretion Instability in Soft X-Ray Transients , 1996 .

[4]  J. Grindlay,et al.  On the evolution of tidal capture X-ray binaries - 4U 2127+12 (M15) to 4U 1820-30 (NGC 6624) , 1987 .

[5]  J. Paradijs,et al.  Periodic UV modulation of X1850 — 087: a double degenerate binary in the globular cluster NGC 6712? , 1996 .

[6]  Achim Weiss,et al.  Stellar Structure and Evolution , 1990 .

[7]  M. S. Hjellming,et al.  Thresholds for rapid mass transfer in binary systems. I. Polytropic models , 1987 .

[8]  G. Hasinger,et al.  Simultaneous ROSAT/Ginga observations of 4U 1820-30 , 1993 .

[9]  G. Savonije,et al.  Tidal evolution of eccentric orbits in massive binary systems. II. Coupled resonance locking for two rotating main sequence stars , 2001 .

[10]  Klaus-Peter Schröder,et al.  Further critical tests of stellar evolution by means of double-lined eclipsing binaries , 1997 .

[11]  M. Bailes,et al.  New limits on the population of millisecond pulsars in the galactic plane. , 1991 .

[12]  The Role of Chaos in the Circularization of Tidal Capture Binaries. II. Long-Time Evolution , 1993, astro-ph/9312054.

[13]  R. Webbink,et al.  The evolution of highly compact binary stellar systems , 1982 .

[14]  T. H. Wood,et al.  Luminous Supersoft X-Ray Sources as Type Ia Progenitors , 1997 .

[15]  P. Eggleton Approximations to the radii of Roche lobes , 1983 .

[16]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[17]  R. West,et al.  Mass loss and evolution in close binaries , 1970 .

[18]  A. V. Tutukov,et al.  On the evolution of close binaries with components of initial mass between 3 solar masses and 12 solar masses , 1985 .

[19]  Walter H. G. Lewin,et al.  X-ray binaries. , 1976 .

[20]  William H. Press,et al.  Numerical recipes in FORTRAN (2nd ed.): the art of scientific computing , 1992 .

[21]  M. Davies,et al.  Evolutionary processes in binary stars (Proceedings of the NATO Advanced Study Institute on evolutionary processes in binary stars, Cambridge, UK, July 10-21, 1995) , 1996 .

[22]  R. Taam,et al.  Magnetic Field Decay and the Origin of Neutron Star Binaries , 1986 .

[23]  P. Podsiadlowski Irradiation-driven mass transfer in low-mass X-ray binaries , 1991, Nature.

[24]  Jean H. Swank,et al.  The Survey of Low-Mass X-Ray Binaries with the Einstein Observatory Solid-State Spectrometer and Monitor Proportional Counter , 1997 .

[25]  K. Blundell,et al.  Images of an Equatorial Outflow in SS 433 , 2001, astro-ph/0109504.

[26]  S. Rappaport,et al.  A new technique for calculations of binary stellar evolution, with application to magnetic braking , 1983 .

[27]  P. Eggleton,et al.  Structure and Evolution of Close Binary Systems , 1976 .

[28]  Stuart L. Shapiro,et al.  Collisions of Giant Stars with Compact Objects: Hydrodynamical Calculations , 1991 .

[29]  E. Morgan,et al.  Changes in the 11 minute period of 4U 1820-30 , 1991 .

[30]  Ewa Szuszkiewicz,et al.  Why Low-Mass Black Hole Binaries Are Transient , 1997 .

[31]  B. Paczyński,et al.  Gravitational radiation and the evolution of cataclysmic binaries , 1981 .

[32]  J. Faulkner Ultrashort-Period Binaries, Gravitational Radiation, and Mass Transfer. I. The Standard Model, with Applications to WZ Sagittae and Z Camelopardalis , 1971 .

[33]  R. Narayan,et al.  Birthrates of Low-Mass Binary Pulsars and Low-Mass X-Ray Binaries , 1988 .

[34]  Jerome A. Orosz,et al.  The optical light curves of Cygnus X-2 (V1341 Cyg) and the mass of its neutron star , 1999 .

[35]  T. Tauris,et al.  Formation of Millisecond Pulsars with Heavy White Dwarf Companions: Extreme Mass Transfer on Subthermal Timescales , 2000, The Astrophysical journal.

[36]  W. H. Press,et al.  On formation of close binaries by two-body tidal capture , 1977 .

[37]  R. Mardling Tidal Capture in Star Clusters , 1996 .

[38]  A. Sansom,et al.  Detection of a 5.7-h period in the globular cluster X-ray source 4U 1746 – 371 , 1993 .

[40]  High-Speed Optical Photometry of the Ultracompact X-Ray Binary 4U 1626–67 , 1997, astro-ph/9706049.

[41]  D. Lorimer,et al.  Observations of 20 Millisecond Pulsars in 47 Tucanae at 20 Centimeters , 1999, astro-ph/9911234.

[42]  Marek J. Sarna,et al.  Cooling curves and initial models for low-mass white dwarfs (<0.25 M⊙) with helium cores , 2000 .

[43]  P. Podsiadlowski The response of tidally heated stars , 1996 .

[44]  Thomas A. Prince,et al.  Discovery of hard X-ray pulsations from the transient source GRO J1744 – 28 , 1996, Nature.

[45]  Martin J. Rees,et al.  Tidal capture formation of binary systems and X-ray sources in globular clusters. , 1975 .

[46]  F. Rogers,et al.  Radiative atomic Rosseland mean opacity tables , 1992 .

[47]  Christopher A. Tout,et al.  Low- and intermediate-mass close binary evolution and the initial-final mass relation , 2000 .

[48]  S. Rappaport,et al.  The evolution of ultrashort period binary systems , 1986 .

[49]  J. Paradijs,et al.  Fate of the companion stars of ultra-rapid pulsars , 1988, Nature.

[50]  S. Rappaport,et al.  Production of recycled pulsars in globular clusters via two-body tidal capture , 1992 .

[51]  Leicester,et al.  The violent past of Cygnus X-2 , 2000, astro-ph/0003441.

[52]  J. Nelson,et al.  4U1626-67: A PROGRADE SPINNING X-RAY PULSAR IN A 2500 s BINARY SYSTEM , 1981 .

[53]  R. N. Manchester,et al.  Catalog of 558 pulsars , 1993 .

[54]  W. Press,et al.  Numerical Recipes in Fortran: The Art of Scientific Computing.@@@Numerical Recipes in C: The Art of Scientific Computing. , 1994 .

[55]  B. Hansen,et al.  Neutron star retention and millisecond pulsar production in globular clusters , 1998 .

[56]  M. Tavani,et al.  Accretion turnoff and rapid evaporation of very light secondaries in low-mass X-ray binaries , 1989 .

[57]  S. Rappaport,et al.  The Nature and Evolutionary History of GRO J1744–28 , 1997 .

[58]  U. Kolb,et al.  Brown dwarfs and the cataclysmic variable period minimum , 1999, astro-ph/9906448.

[59]  David R. Alexander,et al.  Low-Temperature Rosseland Opacities , 1975 .

[60]  S. Rappaport,et al.  Formation of Short-Period Binary Pulsars in Globular Clusters , 1999, The Astrophysical journal.

[61]  Rudolf Kippenhahn,et al.  Methods in Computational Physics , 1967 .

[62]  R. Di Stefano,et al.  The relation between white dwarf mass and orbital period in wide binary radio pulsars , 1995 .

[63]  R. Di Stefano,et al.  Formation and evolution of luminous supersoft X-ray sources , 1994 .

[64]  A. Fedorova,et al.  Evolution of binaries with ultra-short periods: Systematic study , 1989 .

[65]  S. Howell,et al.  AN EXPLORATION OF THE PARADIGM FOR THE 2¨3 HOUR PERIOD GAP IN CATACLYSMIC VARIABLES , 2000, astro-ph/0005435.

[66]  Deutsch,et al.  Ultracompact X-Ray Binaries in Globular Clusters: Variability of the Optical Counterpart of X1832–330 in NGC 6652 , 1999, The Astrophysical journal.

[67]  M. Sarna,et al.  An evolutionary scenario for short-period millisecond binary pulsars , 1996 .

[68]  D. Bhattacharya,et al.  Formation and evolution of binary and millisecond radio pulsars , 1991 .

[69]  S. McMillan,et al.  Formation and evolution of tidal binary systems , 1987 .

[70]  E. M. Lifshitz,et al.  Classical theory of fields , 1952 .

[71]  I. Iben,et al.  On the formation and evolution of a helium degenerate dwarf in a close binary , 1986 .

[72]  L. Stella,et al.  The Discovery of 15--30 Hertz Quasi-periodic Oscillations in the X-Ray flux of 4U 1820-30 , 1987 .

[73]  D. Eichler,et al.  Late evolution of very low mass X-ray binaries sustained by radiation from their primaries , 1989 .

[74]  P. Eggleton,et al.  A critical test of stellar evolution and convective core ‘overshooting’ by means of ζ Aurigae systems , 1997 .

[75]  J. Grindlay,et al.  Timing Analysis of the Light Curve of the Dipping-Bursting X-Ray Binary X1916–053 , 2000, astro-ph/0010465.

[76]  U. Kolb,et al.  Catalogue of Cataclysmic Binaries, Low-Mass X-Ray Binaries and Related Objects , 1984 .

[77]  A. Fruchter,et al.  The integrated flux density of pulsars in globular clusters , 1990 .

[78]  K. Thorne,et al.  Stars with degenerate neutron cores. I. structure of equilibrium models , 1977 .

[79]  S. Rappaport,et al.  NEUTRON STARS IN INTERACTING BINARY SYSTEMS , 1984 .

[80]  D. Stinebring,et al.  A millisecond pulsar in an eclipsing binary , 1988, Nature.