Estimating Kapitza resistance between Si-SiO2 interface using molecular dynamics simulations

The interface between nano-scale films is of relevance in many critical applications. Specifically, recent technological advances in semiconductor industry that utilize Silicon-on-Insulator (SOI) devices have given urgency to understanding thermal transport across Si-SiO2 interface. Estimates of interfacial (Kapitza) resistance to thermal transport across Si-SiO2 films do not appear to exist at the present time. In this paper, we develop and carryout reverse non-equilibrium molecular dynamics (NEMD) simulations by imposing known heat flux to determine the Kapitza resistance between Si-SiO2 thin films. For the Si-SiO2 interface, the average Kapitza resistance for a ~8 Aring thick oxide layer system was 0.503 times 10-9 m K/W and for a ~11.5 Aring thick oxide layer system was 0.518 times 10-9 m K/W. These values were of the same order of magnitude as the Kapitza resistance values determined from the acoustic mismatch model (AMM) and the diffuse mismatch model (DMM) for the Si-SiO2 interface.

[1]  David J. Frank,et al.  Nanoscale CMOS , 1999, Proc. IEEE.

[2]  S. Garde,et al.  Thermal resistance of nanoscopic liquid-liquid interfaces: dependence on chemistry and molecular architecture. , 2005, Nano letters.

[3]  Sokrates T. Pantelides,et al.  Dynamical simulations of nonequilibrium processes — Heat flow and the Kapitza resistance across grain boundaries , 1997 .

[4]  G. Bersuker,et al.  Computational design of Si/SiO2 interfaces: Stress and strain on the atomic scale , 2006 .

[5]  S. Phillpot,et al.  Comparison of atomic-level simulation methods for computing thermal conductivity , 2002 .

[6]  Pawel Keblinski,et al.  Role of thermal boundary resistance on the heat flow in carbon-nanotube composites , 2004 .

[7]  Biswas,et al.  Generation of amorphous-silicon structures with use of molecular-dynamics simulations. , 1987, Physical review. B, Condensed matter.

[8]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[9]  Bin Yu,et al.  FinFET scaling to 10 nm gate length , 2002, Digest. International Electron Devices Meeting,.

[10]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[11]  S. Hamaguchi,et al.  Classical interatomic potentials for Si-O-F and Si-O-Cl systems , 2001 .

[12]  Takanobu Watanabe,et al.  Modeling of SiO2/Si(100) interface structure by using extended -Stillinger-Weber potential , 1999 .

[13]  Kiyoyuki Terakura,et al.  KINETICS OF INITIAL LAYER-BY-LAYER OXIDATION OF SI(001) SURFACES , 1998 .

[14]  Thermal transport across boundaries in diamond structure materials , 1996 .

[15]  Rino,et al.  Interaction potential for SiO2: A molecular-dynamics study of structural correlations. , 1990, Physical review. B, Condensed matter.

[16]  D. Bedrov,et al.  Thermal conductivity of molecular fluids from molecular dynamics simulations: Application of a new imposed-flux method , 2000 .

[17]  P. L. Kapitza,et al.  THE STUDY OF HEAT TRANSFER IN HELIUM II , 1971 .

[18]  R. Kubo,et al.  Statistical-Mechanical Theory of Irreversible Processes. II. Response to Thermal Disturbance , 1957 .

[19]  F. Müller-Plathe A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity , 1997 .

[20]  Michael S. Shur,et al.  Si3N4/AlGaN/GaN–metal–insulator–semiconductor heterostructure field–effect transistors , 2001 .

[21]  J. Tersoff,et al.  New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.

[22]  Kramer,et al.  Force fields for silicas and aluminophosphates based on ab initio calculations. , 1990, Physical review letters.

[23]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[24]  Iwao Ohdomari,et al.  Novel Interatomic Potential Energy Function for Si, O Mixed Systems , 1999 .

[25]  Biswas,et al.  New classical models for silicon structural energies. , 1987, Physical review. B, Condensed matter.

[26]  Simon R. Phillpot,et al.  Kapitza conductance and phonon scattering at grain boundaries by simulation , 2004 .

[27]  R. Pohl,et al.  Thermal boundary resistance , 1989 .

[28]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[29]  Brown,et al.  Atomistic calculation of oxygen diffusivity in crystalline silicon. , 1995, Physical review letters.

[30]  Melville S. Green,et al.  Markoff Random Processes and the Statistical Mechanics of Time‐Dependent Phenomena. II. Irreversible Processes in Fluids , 1954 .

[31]  Andrew G. Glen,et al.  APPL , 2001 .

[32]  Florian Müller-Plathe,et al.  Thermal conductivities of molecular liquids by reverse nonequilibrium molecular dynamics. , 2005, The journal of physical chemistry. B.

[33]  Jennifer R. Lukes,et al.  Interfacial thermal resistance between carbon nanotubes: Molecular dynamics simulations and analytical thermal modeling , 2006 .

[34]  Modeling of a SiO2/Si(001) structure including step and terrace configurations , 2000 .

[35]  Aoki,et al.  First-principles interatomic potential of silica applied to molecular dynamics. , 1988, Physical review letters.

[36]  Paul S. Ho,et al.  Thermal conductivity and interfacial thermal resistance of polymeric low k films , 2001 .

[37]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[38]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[39]  B. Sammakia,et al.  Estimating thermal conductivity of amorphous silica nanoparticles and nanowires using molecular dynamics simulations. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Kenneth E. Goodson,et al.  Measurement and modeling of self-heating in SOI nMOSFET's , 1994 .