Exact and Approximation Algortihms for Clustering
暂无分享,去创建一个
[1] David R. Karger,et al. Scatter/Gather: a cluster-based approach to browsing large document collections , 1992, SIGIR '92.
[2] Nimrod Megiddo,et al. On the Complexity of Some Common Geometric Location Problems , 1984, SIAM J. Comput..
[3] S. Sudarshan,et al. Clustering Techniques for Minimizing External Path Length , 1996, VLDB.
[4] Judit Bar-Ilan,et al. How to Allocate Network Centers , 1993, J. Algorithms.
[5] Rakesh Agrawal,et al. SPRINT: A Scalable Parallel Classifier for Data Mining , 1996, VLDB.
[6] Samir Khuller,et al. The Capacitated K-Center Problem , 2000, SIAM J. Discret. Math..
[7] Jean-Michel Jolion,et al. Robust Clustering with Applications in Computer Vision , 1991, IEEE Trans. Pattern Anal. Mach. Intell..
[8] Micha Sharir,et al. Efficient algorithms for geometric optimization , 1998, CSUR.
[9] Anil K. Jain,et al. Algorithms for Clustering Data , 1988 .
[10] Josef Bigün,et al. Hierarchical image segmentation by multi-dimensional clustering and orientation-adaptive boundary refinement , 1995, Pattern Recognit..
[11] Isidore Rigoutsos,et al. An algorithm for point clustering and grid generation , 1991, IEEE Trans. Syst. Man Cybern..
[12] Vijay V. Vazirani,et al. Primal-dual approximation algorithms for metric facility location and k-median problems , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).
[13] N. S. Barnett,et al. Private communication , 1969 .
[14] David R. Karger,et al. Constant interaction-time scatter/gather browsing of very large document collections , 1993, SIGIR.
[15] Zvi Drezner,et al. The p-Centre Problem—Heuristic and Optimal Algorithms , 1984 .
[16] Sanjeev Arora,et al. Nearly Linear Time Approximation Schemes for Euclidean TSP and Other Geometric Problems , 1997, RANDOM.
[17] Michael R. Anderberg,et al. Cluster Analysis for Applications , 1973 .
[18] Sanjeev Arora,et al. Polynomial time approximation schemes for Euclidean TSP and other geometric problems , 1996, Proceedings of 37th Conference on Foundations of Computer Science.
[19] Jiawei Han,et al. Efficient and Effective Clustering Methods for Spatial Data Mining , 1994, VLDB.
[20] Tomás Feder,et al. Optimal algorithms for approximate clustering , 1988, STOC '88.
[21] Ali S. Hadi,et al. Finding Groups in Data: An Introduction to Chster Analysis , 1991 .
[22] Rajeev Motwani,et al. Incremental clustering and dynamic information retrieval , 1997, STOC '97.
[23] David B. Shmoys,et al. Approximation algorithms for facility location problems , 2000, APPROX.
[24] R. Ng,et al. Eecient and Eeective Clustering Methods for Spatial Data Mining , 1994 .
[25] Tomasz Imielinski,et al. An Interval Classifier for Database Mining Applications , 1992, VLDB.
[26] M. Sharir,et al. E cient Algorithms for Geometric Optimization , 1998 .
[27] Teofilo F. Gonzalez,et al. Covering a Set of Points in Multidimensional Space , 1991, Inf. Process. Lett..
[28] Teofilo F. GONZALEZ,et al. Clustering to Minimize the Maximum Intercluster Distance , 1985, Theor. Comput. Sci..
[29] Neal E. Young,et al. Data collection for the Sloan Digital Sky Survey—a network-flow heuristic , 1996, SODA '96.
[30] Prabhakar Raghavan,et al. Information retrieval algorithms: a survey , 1997, SODA '97.
[31] J. Makhoul,et al. Vector quantization in speech coding , 1985, Proceedings of the IEEE.
[32] Robert J. Fowler,et al. Optimal Packing and Covering in the Plane are NP-Complete , 1981, Inf. Process. Lett..