Congenital myopathies: clinical phenotypes and new diagnostic tools

[1]  L. Wilkins Outcome of intracerebral hemorrhage associated with different oral anticoagulants , 2018, Neurology.

[2]  C. Kubisch,et al.  The rapid evolution of molecular genetic diagnostics in neuromuscular diseases. , 2017, Current opinion in neurology.

[3]  Sathya D. Unudurthi,et al.  A recessive mutation in beta-IV-spectrin (SPTBN4) associates with congenital myopathy, neuropathy, and central deafness , 2017, Human Genetics.

[4]  W. Kress,et al.  The Genetic Approach: Next-Generation Sequencing-Based Diagnosis of Congenital and Infantile Myopathies/Muscle Dystrophies , 2017, Neuropediatrics.

[5]  M. Gautel,et al.  Current and future therapeutic approaches to the congenital myopathies. , 2017, Seminars in cell & developmental biology.

[6]  F. Muntoni,et al.  Dihydropyridine receptor (DHPR, CACNA1S) congenital myopathy , 2017, Acta Neuropathologica.

[7]  E. Malfatti,et al.  Expanding the spectrum of congenital myopathy linked to recessive mutations in SCN4A , 2017, Neurology.

[8]  Linda Groom,et al.  Congenital myopathy results from misregulation of a muscle Ca2+ channel by mutant Stac3 , 2016, Proceedings of the National Academy of Sciences.

[9]  V. Nigro,et al.  Next-generation sequencing approaches for the diagnosis of skeletal muscle disorders. , 2016, Current opinion in neurology.

[10]  N. Voermans,et al.  Congenital myopathies: not only a paediatric topic. , 2016, Current opinion in neurology.

[11]  M. Pane,et al.  MYH7-related myopathies: clinical, histopathological and imaging findings in a cohort of Italian patients , 2016, Orphanet Journal of Rare Diseases.

[12]  R. Prayson,et al.  Congenital fiber-type disproportion. , 2011, Seminars in pediatric neurology.

[13]  E. Bertini,et al.  Novel findings associated with MTM1 suggest a higher number of female symptomatic carriers , 2016, Neuromuscular Disorders.

[14]  F. Santorelli,et al.  Myoimaging in the NGS era: the discovery of a novel mutation in MYH7 in a family with distal myopathy and core-like features – a case report , 2016, BMC Medical Genetics.

[15]  J. L. Costa,et al.  New massive parallel sequencing approach improves the genetic characterization of congenital myopathies , 2016, Journal of Human Genetics.

[16]  K. Heje,et al.  Aerobic Training in Patients with Congenital Myopathy , 2016, PloS one.

[17]  C. Krarup,et al.  Loss-of-function mutations in SCN4A cause severe foetal hypokinesia or ‘classical’ congenital myopathy , 2015, Brain : a journal of neurology.

[18]  D. MacArthur,et al.  Use of Whole-Exome Sequencing for Diagnosis of Limb-Girdle Muscular Dystrophy: Outcomes and Lessons Learned. , 2015, JAMA neurology.

[19]  D. Meyre,et al.  From big data analysis to personalized medicine for all: challenges and opportunities , 2015, BMC Medical Genomics.

[20]  E. Bertini,et al.  Centronuclear myopathies: genotype–phenotype correlation and frequency of defined genetic forms in an Italian cohort , 2015, Journal of Neurology.

[21]  G. Cioni,et al.  A diagnostic dilemma in a family with cystinuria type B resolved by muscle magnetic resonance. , 2015, Pediatric neurology.

[22]  L. Santoro,et al.  A rare mutation in MYH7 gene occurs with overlapping phenotype. , 2015, Biochemical and biophysical research communications.

[23]  G. Ravenscroft,et al.  Pathophysiological concepts in the congenital myopathies: blurring the boundaries, sharpening the focus. , 2015, Brain : a journal of neurology.

[24]  E. Bertini,et al.  Muscle magnetic resonance imaging and histopathology in ACTA1‐related congenital nemaline myopathy , 2014, Muscle & nerve.

[25]  E. Malfatti,et al.  Adult-onset autosomal dominant centronuclear myopathy due to BIN1 mutations. , 2014, Brain : a journal of neurology.

[26]  S. Gabriel,et al.  Leiomodin-3 dysfunction results in thin filament disorganization and nemaline myopathy. , 2014, The Journal of clinical investigation.

[27]  G. Ravenscroft,et al.  SPEG interacts with myotubularin, and its deficiency causes centronuclear myopathy with dilated cardiomyopathy. , 2014, American journal of human genetics.

[28]  J. Rossiter,et al.  Congenital myopathy with cap-like structures and nemaline rods: case report and literature review. , 2014, Pediatric neurology.

[29]  Ching H. Wang,et al.  Approach to the diagnosis of congenital myopathies , 2014, Neuromuscular Disorders.

[30]  F. Muntoni,et al.  Identification of KLHL41 Mutations Implicates BTB-Kelch-Mediated Ubiquitination as an Alternate Pathway to Myofibrillar Disruption in Nemaline Myopathy. , 2013, American journal of human genetics.

[31]  Nasim Vasli,et al.  Recessive truncating titin gene, TTN, mutations presenting as centronuclear myopathy , 2013, Neurology.

[32]  Jasper M. Morrow,et al.  Quantitative Muscle MRI as an Assessment Tool for Monitoring Disease Progression in LGMD2I: A Multicentre Longitudinal Study , 2013, PloS one.

[33]  E. Bertini,et al.  Mutations in KLHL40 are a frequent cause of severe autosomal-recessive nemaline myopathy. , 2013, American journal of human genetics.

[34]  A. Karch,et al.  A comparison of tau and 14-3-3 protein in the diagnosis of Creutzfeldt-Jakob disease , 2013, Neurology.

[35]  Jeremy W. Linsley,et al.  Stac3 is a component of the excitation-contraction coupling machinery and mutated in Native American myopathy , 2013, Nature Communications.

[36]  F. Muntoni,et al.  Congenital myopathies – Clinical features and frequency of individual subtypes diagnosed over a 5-year period in the United Kingdom , 2013, Neuromuscular Disorders.

[37]  N. Dokholyan,et al.  Structural Determinants of Skeletal Muscle Ryanodine Receptor Gating* , 2013, The Journal of Biological Chemistry.

[38]  F. Muntoni,et al.  Mutations in MYH7 cause Multi-minicore Disease (MmD) with variable cardiac involvement , 2012, Neuromuscular Disorders.

[39]  M. Koch,et al.  Dynamin 2 homozygous mutation in humans with a lethal congenital syndrome , 2012, European Journal of Human Genetics.

[40]  Jun Z. Li,et al.  Dominant mutation of CCDC78 in a unique congenital myopathy with prominent internal nuclei and atypical cores. , 2012, American journal of human genetics.

[41]  J. Y. Kuwada,et al.  Oxidative stress and successful antioxidant treatment in models of RYR1-related myopathy. , 2012, Brain : a journal of neurology.

[42]  Ching H. Wang,et al.  Consensus Statement on Standard of Care for Congenital Myopathies , 2012, Journal of child neurology.

[43]  M. Tosetti,et al.  Muscle MRI in TRPV4-related congenital distal SMA , 2012, Neurology.

[44]  Á. Carracedo,et al.  A novel MYH7 mutation links congenital fiber type disproportion and myosin storage myopathy , 2011, Neuromuscular Disorders.

[45]  K. Claeys,et al.  Recessive RYR1 mutations cause unusual congenital myopathy with prominent nuclear internalization and large areas of myofibrillar disorganization , 2011, Neuropathology and applied neurobiology.

[46]  A. Krol,et al.  Satellite cell loss and impaired muscle regeneration in selenoprotein N deficiency. , 2011, Human Molecular Genetics.

[47]  I. Nishino,et al.  Defects in amphiphysin 2 (BIN1) and triads in several forms of centronuclear myopathies , 2011, Acta Neuropathologica.

[48]  J. Lainé,et al.  A centronuclear myopathy-dynamin 2 mutation impairs skeletal muscle structure and function in mice. , 2010, Human molecular genetics.

[49]  F. Mastaglia,et al.  Dominant mutations in KBTBD13, a member of the BTB/Kelch family, cause nemaline myopathy with cores. , 2010, American journal of human genetics.

[50]  S. Omholt,et al.  Phenomics: the next challenge , 2010, Nature Reviews Genetics.

[51]  Straub,et al.  RYR1 mutations are a common cause of congenital myopathies with central nuclei , 2010, Annals of neurology.

[52]  K. Bushby,et al.  Recessive mutations in RYR1 are a common cause of congenital fiber type disproportion , 2010, Human mutation.

[53]  N. Romero Centronuclear myopathies: A widening concept , 2010, Neuromuscular Disorders.

[54]  K. Flanigan,et al.  Expanding the clinical, pathological and MRI phenotype of DNM2-related centronuclear myopathy , 2010, Neuromuscular Disorders.

[55]  C. Hawkins,et al.  Cap myopathy caused by a mutation of the skeletal alpha-actin gene ACTA1 , 2010, Neuromuscular Disorders.

[56]  A. Beggs,et al.  Mutations of tropomyosin 3 (TPM3) are common and associated with type 1 myofiber hypotrophy in congenital fiber type disproportion , 2010, Human mutation.

[57]  A. E. Rossi,et al.  Characterization and temporal development of cores in a mouse model of malignant hyperthermia , 2009, Proceedings of the National Academy of Sciences.

[58]  D. Figarella-Branger,et al.  A TPM3 mutation causing cap myopathy , 2009, Neuromuscular Disorders.

[59]  M. Tosetti,et al.  Muscle MRI in FHL1-linked reducing body myopathy , 2009, Neuromuscular Disorders.

[60]  M. Wattjes,et al.  Pattern of skeletal muscle involvement in primary dysferlinopathies: a whole‐body 3.0‐T magnetic resonance imaging study , 2009, Acta neurologica Scandinavica.

[61]  K. Davies,et al.  Rescue of skeletal muscle α-actin–null mice by cardiac (fetal) α-actin , 2009, The Journal of cell biology.

[62]  L. Waddell,et al.  Cap disease due to mutation of the beta-tropomyosin gene (TPM2) , 2009, Neuromuscular Disorders.

[63]  K. Claeys,et al.  “Necklace” fibers, a new histological marker of late-onset MTM1-related centronuclear myopathy , 2009, Acta Neuropathologica.

[64]  E. Aronica,et al.  TPM2 mutation , 2008, Neuromuscular Disorders.

[65]  S. Quijano-roy,et al.  New morphologic and genetic findings in cap disease associated with β-tropomyosin (TPM2) mutations , 2008, Neurology.

[66]  R. Durbin,et al.  Mapping Quality Scores Mapping Short Dna Sequencing Reads and Calling Variants Using P

, 2022 .

[67]  N. Romero,et al.  Mutations in TPM3 are a common cause of congenital fiber type disproportion , 2008, Annals of neurology.

[68]  S. Salzberg,et al.  Bioinformatics challenges of new sequencing technology. , 2008, Trends in genetics : TIG.

[69]  N. Laing Congenital myopathies , 2007, Current opinion in neurology.

[70]  C. Wallgren‐Pettersson,et al.  Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy , 2007, Nature Genetics.

[71]  Susan C. Brown,et al.  Molecular mechanisms and phenotypic variation in RYR1-related congenital myopathies. , 2007, Brain : a journal of neurology.

[72]  R. Cerini,et al.  Two novel mutations in dynamin-2 cause axonal Charcot–Marie–Tooth disease , 2007, Neurology.

[73]  Tore K Kvien,et al.  Bmc Medical Genetics Lack of Association between the Chemokine Receptor 5 Polymorphism Ccr5delta32 in Rheumatoid Arthritis and Juvenile Idiopathic Arthritis , 2022 .

[74]  H. Jungbluth Central core disease. , 2007, Orphanet journal of rare diseases.

[75]  D. Torigian,et al.  MRI in DNM2-related centronuclear myopathy: Evidence for highly selective muscle involvement , 2007, Neuromuscular Disorders.

[76]  M. Swash,et al.  Minicore myopathy with ophthalmoplegia caused by mutations in the ryanodine receptor type 1 gene , 2005, Neurology.

[77]  S. Ducreux,et al.  Ryanodine receptor 1 mutations, dysregulation of calcium homeostasis and neuromuscular disorders , 2005, Neuromuscular Disorders.

[78]  A. Beggs,et al.  X-Linked Myotubular and Centronuclear Myopathies , 2005, Journal of neuropathology and experimental neurology.

[79]  G. Bydder,et al.  Magnetic resonance imaging of muscle in nemaline myopathy , 2004, Neuromuscular Disorders.

[80]  G. Bydder,et al.  Magnetic resonance imaging of muscle in congenital myopathies associated with RYR1 mutations , 2004, Neuromuscular Disorders.

[81]  I. Nonaka,et al.  Actin mutations are one cause of congenital fibre type disproportion , 2004, Annals of neurology.

[82]  M. Main,et al.  Pilot trial of salbutamol in central core and multi-minicore diseases. , 2004, Neuropediatrics.

[83]  N. Romero,et al.  Dominant and recessive central core disease associated with RYR1 mutations and fetal akinesia. , 2003, Brain : a journal of neurology.

[84]  L. Thornell,et al.  Myosin storage myopathy associated with a heterozygous missense mutation in MYH7 , 2003, Annals of neurology.

[85]  J. Allsop,et al.  Muscle magnetic resonance imaging in patients with congenital muscular dystrophy and Ullrich phenotype , 2003, Neuromuscular Disorders.

[86]  F. Hanefeld,et al.  Filamin C accumulation is a strong but nonspecific immunohistochemical marker of core formation in muscle , 2003, Journal of the Neurological Sciences.

[87]  M. Krawczak,et al.  Genotype–phenotype correlations in X-linked myotubular myopathy , 2002, Neuromuscular Disorders.

[88]  T. Helliwell,et al.  The spectrum of pathology in central core disease , 2002, Neuromuscular Disorders.

[89]  G. Bydder,et al.  A short protocol for muscle MRI in children with muscular dystrophies. , 2002, European journal of paediatric neurology : EJPN : official journal of the European Paediatric Neurology Society.

[90]  F. Muntoni,et al.  Mutations of the selenoprotein N gene, which is implicated in rigid spine muscular dystrophy, cause the classical phenotype of multiminicore disease: reassessing the nosology of early-onset myopathies. , 2002, American journal of human genetics.

[91]  Jean-Jacques Martin,et al.  Workshop report of the 89th ENMC International Workshop: Central Core Disease, 19th–20th January 2001, Hilversum, The Netherlands , 2002, Neuromuscular Disorders.

[92]  A. Lemainque,et al.  A recessive form of central core disease, transiently presenting as multi‐minicore disease, is associated with a homozygous mutation in the ryanodine receptor type 1 gene , 2002, Annals of neurology.

[93]  M. Ridanpää,et al.  Mutations in the β-tropomyosin (TPM2) gene – a rare cause of nemaline myopathy , 2002, Neuromuscular Disorders.

[94]  N. Tubridy,et al.  Congenital myopathies and congenital muscular dystrophies , 2001, Current opinion in neurology.

[95]  A. Beggs,et al.  Nemaline myopathy: A clinical study of 143 cases , 2001, Annals of neurology.

[96]  A A Schäffer,et al.  A novel nemaline myopathy in the Amish caused by a mutation in troponin T1. , 2000, American journal of human genetics.

[97]  G. Superti-Furga,et al.  Myotubularin, a phosphatase deficient in myotubular myopathy, acts on phosphatidylinositol 3-kinase and phosphatidylinositol 3-phosphate pathway. , 2000, Human molecular genetics.

[98]  N. Laing,et al.  Report of the 70th ENMC International Workshop: Nemaline myopathy, 11–13 June 1999, Naarden, The Netherlands , 2000, Neuromuscular Disorders.

[99]  T. McCarthy,et al.  Ryanodine receptor mutations in malignant hyperthermia and central core disease , 2000, Human mutation.

[100]  D. Ellison,et al.  A clinical and genetic study of a manifesting heterozygote with X-linked myotubular myopathy , 2000, Neuromuscular Disorders.

[101]  K. Pelin,et al.  Mutations in the skeletal muscle α-actin gene in patients with actin myopathy and nemaline myopathy , 1999, Nature Genetics.

[102]  Nigel,et al.  Mutations in the nebulin gene associated with autosomal recessive nemaline myopathy. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[103]  D. Lev,et al.  Skewed X-inactivation in a manifesting carrier of X-linked myotubular myopathy and in her non-manifesting carrier mother , 1999, Human Genetics.

[104]  Wei Zhao,et al.  Medical complications in long-term survivors with X-linked myotubular myopathy. , 1999, The Journal of pediatrics.

[105]  F. Mastaglia,et al.  Autosomal dominant distal myopathy: linkage to chromosome 14. , 1995, American journal of human genetics.

[106]  M. Phillips,et al.  A mutation in the human ryanodine receptor gene associated with central core disease , 1993, Nature Genetics.

[107]  C. Doriguzzi,et al.  Mutations in the ryanodine receptor gene in central core disease and malignant hyperthermia , 1993, Nature Genetics.

[108]  Marinos C. Dalakas,et al.  Muscle biopsy — a practical approach , 1986, The Ulster Medical Journal.

[109]  A. Fidziańska,et al.  “Cap disease” , 1981, Neurology.

[110]  A. Engel,et al.  Multicore disease. A recently recognized congenital myopathy associated with multifocal degeneration of muscle fibers. , 1971, Mayo Clinic proceedings.

[111]  C. Pearson,et al.  Familial myopathy with probable lysis of myofibrils in type I fibers , 1971, Neurology.

[112]  V. Dubowitz,et al.  Oxidative enzymes and phosphorylase in central-core disease of muscle. , 1960, Lancet.

[113]  F. Muntoni,et al.  Core myopathies. , 2011, Seminars in Pediatric Neurology.

[114]  H. Jungbluth Orphanet Journal of Rare Diseases BioMed Central Review Multi-minicore Disease , 2007 .

[115]  P. Dormitzer,et al.  Nemaline myopathy with minicores caused by mutation of the CFL2 gene encoding the skeletal muscle actin-binding protein, cofilin-2. , 2007, American journal of human genetics.

[116]  A. Beggs,et al.  Mutations in dynamin 2 cause dominant centronuclear myopathy. , 2005, Nature genetics.

[117]  C. Wallgren‐Pettersson Congenital myopathies. , 2005, European journal of paediatric neurology : EJPN : official journal of the European Paediatric Neurology Society.

[118]  M. Ridanpää,et al.  Mutations in the beta-tropomyosin (TPM2) gene--a rare cause of nemaline myopathy. , 2002, Neuromuscular disorders : NMD.

[119]  N. Laing,et al.  A mutation in the alpha tropomyosin gene TPM3 associated with autosomal dominant nemaline myopathy NEM1. , 1995, Nature genetics.

[120]  E. Haan,et al.  A mutation in the α tropomyosin gene TPM3 associated with autosomal dominant nemaline myopathy , 1995, Nature Genetics.

[121]  E. Haan,et al.  Erratum: A mutation in the α tropomyosin gene TPM3 associated with autosomal dominant nemaline myopathy NEM1 (Nature Genetics (1995) 9 (75-79)) , 1995 .

[122]  N. Gonatas,et al.  Myotubular myopathy. Persistence of fetal muscle in an adolescent boy. , 1966, Archives of neurology.