A numerical study on flow through the spiral casing of a hydraulic turbine

SUMMARY Flow through the spiral casing of a hydraulic turbine was analyzed. Reynolds averaged Navier‐Stokes equations were solved using a finite element method. The physical domain was divided into a number of hexahedral elements which are isoparametrically mapped onto standard cubic elements. Numerical integration for the unsteady momentum equation is performed over such hexahedral elements to obtain a provisional velocity field. Compliance with the mass conservation equation and determination of the pressure correction are accomplished through an iterative procedure. The velocity distribution inside the spiral casing corroborates the results available in literature. The static pressure at the midplane generally decreases from the outside wall towards the exit of the spiral casing. © 1998 John Wiley & Sons, Ltd.