Resonance dynamics of kinks in the sine-Gordon model with impurity, external force and damping

We study the resonance dynamics of the sine-Gordon equation kinks with a point impurity. We consider the possibility of localized nonlinear waves generation on the impurities. By using analytical and numerical methods we show that the damping and external force counteract the development of kink resonant reflection from the attracting impurity. However, the underlying causea resonant energy exchange between solitonsstill occurs.

[1]  R. Salimov,et al.  On localized long-lived three-dimensional solutions of the nonlinear Klein-Gordon equation with a fractional power potential , 2014 .

[2]  Boris A. Malomed,et al.  Dynamics of quasi-one dimensional kinks in the two-dimensional sine-Gordon model , 1991 .

[4]  Daisuke Furihata,et al.  Finite-difference schemes for nonlinear wave equation that inherit energy conservation property , 2001 .

[5]  P. Kevrekidis,et al.  The sine-Gordon model and its applications : from pendula and Josephson junctions to gravity and high-energy physics , 2014 .

[6]  Athanassios G. Bratsos,et al.  The solution of the sine-gordon equation using the method of lines , 1996, Int. J. Comput. Math..

[7]  A. Kudryavtsev,et al.  Solitons and their interactions in classical field theory , 1997 .

[8]  L. Kavitha,et al.  Nonlinear nano-scale localized breather modes in a discrete weak ferromagnetic spin lattice , 2016 .

[9]  K. Javidan Analytical formulation for soliton-potential dynamics. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  S. Popov Scattering of solitons by dislocations in the modified Korteweg de Vries–sine-Gordon equation , 2015 .

[11]  Anjan Biswas,et al.  Perturbation of topological solitons due to sine-Gordon equation and its type , 2009 .

[12]  A. Gumerov,et al.  Transformation of sine-Gordon solitons in models with variable coefficients and damping , 2015 .

[13]  Qin Sheng,et al.  A predictor‐‐corrector scheme for the sine‐Gordon equation , 2000 .

[14]  J. Gibbon,et al.  Solitons and Nonlinear Wave Equations , 1982 .

[15]  A. Gumerov,et al.  Interaction of sine‐Gordon solitons in the model with attracting impurities , 2017 .

[16]  Sh. A. Azamatov,et al.  Studying the nucleation and evolution of magnetic inhomogeneities of the soliton and breather type in magnetic materials with local inhomogeneities of anisotropy , 2008 .

[17]  Mehdi Dehghan,et al.  High-order solution of one-dimensional sine-Gordon equation using compact finite difference and DIRKN methods , 2010, Math. Comput. Model..

[18]  A. Majda,et al.  Radiation boundary conditions for acoustic and elastic wave calculations , 1979 .

[19]  A. Gumerov,et al.  Structure and properties of four-kink multisolitons of the sine-Gordon equation , 2014 .

[20]  S. Popov Application of the quasi-spectral fourier method to soliton equations , 2010 .

[21]  Scattering of sine-Gordon kinks on potential wells , 2006, hep-th/0611040.

[22]  S. Popov Influence of dislocations on kink solutions of the double sine-Gordon equation , 2013 .

[23]  O. Gorobets,et al.  Magnetization boundary conditions at a ferromagnetic interface of finite thickness , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[24]  Sh. A. Azamatov,et al.  Excitation of nonlinear solitary flexural waves in a moving domain wall , 2009 .

[25]  A. G. Bratsos A numerical method for the one‐dimensional sine‐Gordon equation , 2008 .

[26]  W. Evans,et al.  On radial sine-Gordon breathers , 2000 .

[27]  Y. Kivshar,et al.  Resonant kink-impurity interactions in the sine-Gordon model. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[28]  Mehdi Dehghan,et al.  A numerical method for one‐dimensional nonlinear Sine‐Gordon equation using collocation and radial basis functions , 2008 .

[29]  Wu Zong-min,et al.  A numerical method for one-dimensional nonlinear sine-Gordon equation using multiquadric quasi-interpolation , 2009 .

[30]  A. Gumerov,et al.  Numerical simulation of the generation of multisoliton type magnetic inhomogeneities in ferromagnets with inhomogeneous parameters , 2014 .

[31]  Philip Holmes,et al.  Interaction of sine-Gordon kinks with defects: phase space transport in a two-mode model , 2002 .

[32]  Yuri S. Kivshar,et al.  The Frenkel-Kontorova Model: Concepts, Methods, and Applications , 2004 .

[33]  Michel Peyrard,et al.  Physics of Solitons , 2006 .

[34]  P. Kevrekidis,et al.  High Energy Density in Multisoliton Collisions , 2015, 1506.01389.

[35]  Robert L. Higdon,et al.  Numerical absorbing boundary conditions for the wave equation , 1987 .

[36]  A. Bishop,et al.  Numerical simulation of sine-Gordon soliton dynamics in the presence of perturbations , 1977 .