Axioms of adaptivity
暂无分享,去创建一个
Carsten Carstensen | Michael Feischl | Dirk Praetorius | Marcus Page | C. Carstensen | D. Praetorius | M. Feischl | M. Page
[1] Michael Feischl,et al. Adaptive FEM with Optimal Convergence Rates for a Certain Class of Nonsymmetric and Possibly Nonlinear Problems , 2012, SIAM J. Numer. Anal..
[2] Ricardo H. Nochetto,et al. Local problems on stars: A posteriori error estimators, convergence, and performance , 2003, Math. Comput..
[3] D. Praetorius,et al. Convergence of adaptive FEM for some elliptic obstacle problem , 2010 .
[4] Shipeng Mao,et al. Quasi-Optimality of Adaptive Nonconforming Finite Element Methods for the Stokes Equations , 2011, SIAM J. Numer. Anal..
[5] Carsten Carstensen,et al. ERROR REDUCTION IN ADAPTIVE FINITE ELEMENT APPROXIMATIONS OF ELLIPTIC OBSTACLE PROBLEMS , 2009 .
[6] Hella Rabus. A Natural Adaptive Nonconforming FEM Of Quasi-Optimal Complexity , 2010, Comput. Methods Appl. Math..
[7] ROB STEVENSON,et al. The completion of locally refined simplicial partitions created by bisection , 2008, Math. Comput..
[8] Carsten Carstensen,et al. Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM , 2002, Math. Comput..
[9] Carsten Carstensen,et al. Discrete Reliability for Crouzeix-Raviart FEMs , 2013, SIAM J. Numer. Anal..
[10] Gary R. Consolazio,et al. Finite Elements , 2007, Handbook of Dynamic System Modeling.
[11] A. Alonso. Error estimators for a mixed method , 1996 .
[12] Carsten Carstensen,et al. Estimator competition for Poisson problems , 2010 .
[13] Ivo Babuška,et al. Analysis of optimal finite-element meshes in ¹ , 1979 .
[14] R. Curtain,et al. Functional Analysis in Modern Applied Mathematics , 1977 .
[15] Ricardo H. Nochetto,et al. Multiscale and Adaptivity: Modeling, Numerics and Applications , 2012 .
[16] Carsten Carstensen,et al. Optimal adaptive nonconforming FEM for the Stokes problem , 2013, Numerische Mathematik.
[17] Michael Feischl,et al. Convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data☆ , 2014, J. Comput. Appl. Math..
[18] I. Babuska,et al. A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator , 1987 .
[19] S. Mao,et al. Convergence and quasi-optimal complexity of a simple adaptive finite element method , 2009 .
[20] C. Schwab,et al. Boundary Element Methods , 2010 .
[21] Michael Vogelius,et al. Feedback and adaptive finite element solution of one-dimensional boundary value problems , 1984 .
[22] Carsten Carstensen,et al. An optimal adaptive mixed finite element method , 2011, Math. Comput..
[23] Carsten Carstensen,et al. Adaptive nonconforming Crouzeix-Raviart FEM for eigenvalue problems , 2014, Math. Comput..
[24] Carsten Carstensen,et al. A posteriori error estimate for the mixed finite element method , 1997, Math. Comput..
[25] Dietmar Gallistl,et al. An optimal adaptive FEM for eigenvalue clusters , 2015, Numerische Mathematik.
[26] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[27] Ricardo H. Nochetto,et al. Quasi-Optimal Convergence Rate of an Adaptive Discontinuous Galerkin Method , 2010, SIAM J. Numer. Anal..
[28] Michael Karkulik,et al. Efficiency and Optimality of Some Weighted-Residual Error Estimator for Adaptive 2D Boundary Element Methods , 2013, Comput. Methods Appl. Math..
[29] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[30] Jun Hu,et al. A unifying theory of a posteriori error control for nonconforming finite element methods , 2007, Numerische Mathematik.
[31] Christian Kreuzer,et al. Optimality of an adaptive finite element method for the p-Laplacian equation , 2012 .
[32] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[33] Michael Karkulik,et al. Quasi-optimal Convergence Rate for an Adaptive Boundary Element Method , 2013, SIAM J. Numer. Anal..
[34] O. C. Zienkiewicz,et al. A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .
[35] Michael Karkulik,et al. On 2D Newest Vertex Bisection: Optimality of Mesh-Closure and H1-Stability of L2-Projection , 2013 .
[36] Ricardo H. Nochetto,et al. Convergence of Adaptive Finite Element Methods for General Second Order Linear Elliptic PDEs , 2005, SIAM J. Numer. Anal..
[37] Carsten Carstensen,et al. A posteriori error estimates for boundary element methods , 1995 .
[38] Kunibert G. Siebert,et al. A convergence proof for adaptive finite elements without lower bound , 2011 .
[39] R. Durán,et al. Error estimators for nonconforming finite element approximations of the Stokes problem , 1995 .
[40] E. Zeidler. Nonlinear functional analysis and its applications , 1988 .
[41] Michael Karkulik,et al. Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, part I: weakly-singular integral equation , 2014 .
[42] Carsten Carstensen,et al. Efficiency of a posteriori BEM-error estimates for first-kind integral equations on quasi-uniform meshes , 1996, Math. Comput..
[43] Carsten Carstensen,et al. An Adaptive Mesh-Refining Algorithm Allowing for an H1 Stable L2 Projection onto Courant Finite Element Spaces , 2004 .
[44] Carsten Carstensen,et al. An oscillation-free adaptive FEM for symmetric eigenvalue problems , 2011, Numerische Mathematik.
[45] Carsten Carstensen,et al. Convergence analysis of an adaptive nonconforming finite element method , 2006, Numerische Mathematik.
[46] R. Nochetto,et al. Theory of adaptive finite element methods: An introduction , 2009 .
[47] Hsu-Shih Shih,et al. Computers and Mathematics with Applications , 2008 .
[48] Christian Kreuzer,et al. Linear Convergence of an Adaptive Finite Element Method for the p-Laplacian Equation , 2008, SIAM J. Numer. Anal..
[49] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[50] Dirk Praetorius,et al. Estimator reduction and convergence of adaptive BEM , 2012, Applied numerical mathematics : transactions of IMACS.
[51] Carsten Carstensen,et al. The Adaptive Nonconforming FEM for the Pure Displacement Problem in Linear Elasticity is Optimal and Robust , 2012, SIAM J. Numer. Anal..
[52] Wolfgang Dahmen,et al. Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.
[53] Carsten Carstensen,et al. Convergence analysis of a conforming adaptive finite element method for an obstacle problem , 2007, Numerische Mathematik.
[54] Christian Kreuzer,et al. Decay rates of adaptive finite elements with Dörfler marking , 2011, Numerische Mathematik.
[55] Kunibert G. Siebert,et al. A BASIC CONVERGENCE RESULT FOR CONFORMING ADAPTIVE FINITE ELEMENTS , 2008 .
[56] W. McLean. Strongly Elliptic Systems and Boundary Integral Equations , 2000 .
[57] Carsten Carstensen,et al. Residual-based a posteriori error estimate for hypersingular equation on surfaces , 2004, Numerische Mathematik.
[58] Jinchao Xu,et al. Numerische Mathematik Convergence and optimal complexity of adaptive finite element eigenvalue computations , 2022 .
[59] I. Babuska,et al. Analysis of Optimal Finite Element Meshes in R1 , 1979 .
[60] Michael Feischl,et al. Convergence of adaptive FEM for elliptic obstacle problems , 2011 .
[61] Jianguo Huang,et al. Convergence and complexity of arbitrary order adaptive mixed element methods for the Poisson equation , 2012 .
[62] Long Chen,et al. Convergence and optimality of adaptive mixed finite element methods , 2010, Math. Comput..
[63] Xuying Zhao,et al. Convergence of a standard adaptive nonconforming finite element method with optimal complexity , 2010 .
[64] S. Repin. A Posteriori Estimates for Partial Differential Equations , 2008 .
[65] Carsten Carstensen,et al. A unifying theory of a posteriori finite element error control , 2005, Numerische Mathematik.
[66] Carsten Carstensen,et al. Error reduction and convergence for an adaptive mixed finite element method , 2006, Math. Comput..
[67] Stefan A. Funken,et al. Efficient implementation of adaptive P1-FEM in Matlab , 2011, Comput. Methods Appl. Math..
[68] Carsten Carstensen,et al. An Adaptive Finite Element Eigenvalue Solver of Asymptotic Quasi-Optimal Computational Complexity , 2012, SIAM J. Numer. Anal..
[69] Michael Karkulik,et al. Inverse estimates for elliptic boundary integral operators and their application to the adaptive coupling of FEM and BEM , 2012, 1211.4360.
[70] Ricardo H. Nochetto,et al. Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..
[71] Andreas Veeser,et al. LOCALLY EFFICIENT AND RELIABLE A POSTERIORI ERROR ESTIMATORS FOR DIRICHLET PROBLEMS , 2006 .
[72] Rob P. Stevenson,et al. An Optimal Adaptive Finite Element Method for the Stokes Problem , 2008, SIAM J. Numer. Anal..
[73] Carsten Carstensen,et al. Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis , 2004, Numerische Mathematik.
[74] Jean E. Roberts,et al. Mixed and hybrid finite element methods , 1987 .
[75] Ronald H. W. Hoppe,et al. Adaptive Multilevel Techniques for Mixed Finite Element Discretizations of Elliptic Boundary Value Problems , 1997 .
[76] Jens Markus Melenk,et al. Institute for Analysis and Scientific Computing , 2015 .
[77] Pedro Morin,et al. Quasi-optimal convergence rate of an AFEM for quasi-linear problems , 2010, 1010.1251.
[78] Christian Kreuzer,et al. Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..
[79] Carsten Carstensen,et al. Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..
[80] Carsten Carstensen,et al. Adaptive Boundary Element Methods for Some First Kind Integral Equations , 1996 .
[81] Michael Feischl,et al. Each H1/2–stable projection yields convergence and quasi–optimality of adaptive FEM with inhomogeneous Dirichlet data in Rd , 2013 .
[82] Jun Hu,et al. New a posteriori error estimate and quasi-optimal convergence of the adaptive nonconforming Wilson element , 2014, J. Comput. Appl. Math..
[83] Serge Nicaise,et al. Adaptive finite element methods for elliptic problems: Abstract framework and applications , 2010 .
[84] R. Durán,et al. A posteriori error estimators for nonconforming finite element methods , 1996 .
[85] P. Raviart,et al. Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .
[86] Rob P. Stevenson,et al. Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..
[87] Michael Feischl,et al. Convergence of some adaptive FEM-BEM coupling for elliptic but possibly nonlinear interface problems , 2012 .
[88] Marcus Page. Schätzerreduktion und Konvergenz adaptiver FEM für Hindernisprobleme , 2010 .
[89] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[90] Carsten Carstensen,et al. An a posteriori error estimate for a first-kind integral equation , 1997, Math. Comput..
[91] Michael Karkulik,et al. On 2D newest vertex bisection: Optimality of mesh-closure and H 1 -stability of , 2012 .
[92] Carsten Carstensen,et al. Quasi-optimal Adaptive Pseudostress Approximation of the Stokes Equations , 2013, SIAM J. Numer. Anal..
[93] Shipeng Mao,et al. A Convergent Nonconforming Adaptive Finite Element Method with Quasi-Optimal Complexity , 2010, SIAM J. Numer. Anal..
[94] R. Hoppe,et al. A review of unified a posteriori finite element error control , 2012 .
[95] Wolfgang L. Wendland,et al. Boundary integral equations , 2008 .
[96] Christoph Ortner,et al. Convergence of simple adaptive Galerkin schemes based on h − h/2 error estimators , 2010, Numerische Mathematik.
[97] Ricardo H. Nochetto,et al. Quasioptimal cardinality of AFEM driven by nonresidual estimators , 2012 .
[98] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[99] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[100] I. Babuska,et al. The finite element method and its reliability , 2001 .
[101] Carsten Carstensen,et al. A posteriori error estimates for nonconforming finite element methods , 2002, Numerische Mathematik.
[102] Carsten Carstensen,et al. An experimental survey of a posteriori Courant finite element error control for the Poisson equation , 2001, Adv. Comput. Math..
[103] Tsogtgerel Gantumur,et al. Adaptive boundary element methods with convergence rates , 2011, Numerische Mathematik.
[104] Dongho Kim,et al. A Priori and A Posteriori Pseudostress-velocity Mixed Finite Element Error Analysis for the Stokes Problem , 2011, SIAM J. Numer. Anal..
[105] Ricardo H. Nochetto,et al. An Adaptive Uzawa FEM for the Stokes Problem: Convergence without the Inf-Sup Condition , 2002, SIAM J. Numer. Anal..
[106] L. Evans,et al. Partial Differential Equations , 1941 .
[107] Carsten Carstensen,et al. Numerische Mathematik A posteriori error estimate and h-adaptive algorithm on surfaces for Symm ’ s integral equation , 2001 .
[108] Jun Hu,et al. Convergence and Optimality of the Adaptive Nonconforming Linear Element Method for the Stokes Problem , 2012, Journal of Scientific Computing.
[109] R. Rodríguez. Some remarks on Zienkiewicz‐Zhu estimator , 1994 .
[110] Ricardo H. Nochetto,et al. Primer of Adaptive Finite Element Methods , 2011 .
[111] G. Strang,et al. An Analysis of the Finite Element Method , 1974 .