Axioms of adaptivity

This paper aims first at a simultaneous axiomatic presentation of the proof of optimal convergence rates for adaptive finite element methods and second at some refinements of particular questions like the avoidance of (discrete) lower bounds, inexact solvers, inhomogeneous boundary data, or the use of equivalent error estimators. Solely four axioms guarantee the optimality in terms of the error estimators. Compared to the state of the art in the temporary literature, the improvements of this article can be summarized as follows: First, a general framework is presented which covers the existing literature on optimality of adaptive schemes. The abstract analysis covers linear as well as nonlinear problems and is independent of the underlying finite element or boundary element method. Second, efficiency of the error estimator is neither needed to prove convergence nor quasi-optimal convergence behavior of the error estimator. In this paper, efficiency exclusively characterizes the approximation classes involved in terms of the best-approximation error and data resolution and so the upper bound on the optimal marking parameters does not depend on the efficiency constant. Third, some general quasi-Galerkin orthogonality is not only sufficient, but also necessary for the R-linear convergence of the error estimator, which is a fundamental ingredient in the current quasi-optimality analysis due to Stevenson 2007. Finally, the general analysis allows for equivalent error estimators and inexact solvers as well as different non-homogeneous and mixed boundary conditions.

[1]  Michael Feischl,et al.  Adaptive FEM with Optimal Convergence Rates for a Certain Class of Nonsymmetric and Possibly Nonlinear Problems , 2012, SIAM J. Numer. Anal..

[2]  Ricardo H. Nochetto,et al.  Local problems on stars: A posteriori error estimators, convergence, and performance , 2003, Math. Comput..

[3]  D. Praetorius,et al.  Convergence of adaptive FEM for some elliptic obstacle problem , 2010 .

[4]  Shipeng Mao,et al.  Quasi-Optimality of Adaptive Nonconforming Finite Element Methods for the Stokes Equations , 2011, SIAM J. Numer. Anal..

[5]  Carsten Carstensen,et al.  ERROR REDUCTION IN ADAPTIVE FINITE ELEMENT APPROXIMATIONS OF ELLIPTIC OBSTACLE PROBLEMS , 2009 .

[6]  Hella Rabus A Natural Adaptive Nonconforming FEM Of Quasi-Optimal Complexity , 2010, Comput. Methods Appl. Math..

[7]  ROB STEVENSON,et al.  The completion of locally refined simplicial partitions created by bisection , 2008, Math. Comput..

[8]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM , 2002, Math. Comput..

[9]  Carsten Carstensen,et al.  Discrete Reliability for Crouzeix-Raviart FEMs , 2013, SIAM J. Numer. Anal..

[10]  Gary R. Consolazio,et al.  Finite Elements , 2007, Handbook of Dynamic System Modeling.

[11]  A. Alonso Error estimators for a mixed method , 1996 .

[12]  Carsten Carstensen,et al.  Estimator competition for Poisson problems , 2010 .

[13]  Ivo Babuška,et al.  Analysis of optimal finite-element meshes in ¹ , 1979 .

[14]  R. Curtain,et al.  Functional Analysis in Modern Applied Mathematics , 1977 .

[15]  Ricardo H. Nochetto,et al.  Multiscale and Adaptivity: Modeling, Numerics and Applications , 2012 .

[16]  Carsten Carstensen,et al.  Optimal adaptive nonconforming FEM for the Stokes problem , 2013, Numerische Mathematik.

[17]  Michael Feischl,et al.  Convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data☆ , 2014, J. Comput. Appl. Math..

[18]  I. Babuska,et al.  A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator , 1987 .

[19]  S. Mao,et al.  Convergence and quasi-optimal complexity of a simple adaptive finite element method , 2009 .

[20]  C. Schwab,et al.  Boundary Element Methods , 2010 .

[21]  Michael Vogelius,et al.  Feedback and adaptive finite element solution of one-dimensional boundary value problems , 1984 .

[22]  Carsten Carstensen,et al.  An optimal adaptive mixed finite element method , 2011, Math. Comput..

[23]  Carsten Carstensen,et al.  Adaptive nonconforming Crouzeix-Raviart FEM for eigenvalue problems , 2014, Math. Comput..

[24]  Carsten Carstensen,et al.  A posteriori error estimate for the mixed finite element method , 1997, Math. Comput..

[25]  Dietmar Gallistl,et al.  An optimal adaptive FEM for eigenvalue clusters , 2015, Numerische Mathematik.

[26]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[27]  Ricardo H. Nochetto,et al.  Quasi-Optimal Convergence Rate of an Adaptive Discontinuous Galerkin Method , 2010, SIAM J. Numer. Anal..

[28]  Michael Karkulik,et al.  Efficiency and Optimality of Some Weighted-Residual Error Estimator for Adaptive 2D Boundary Element Methods , 2013, Comput. Methods Appl. Math..

[29]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[30]  Jun Hu,et al.  A unifying theory of a posteriori error control for nonconforming finite element methods , 2007, Numerische Mathematik.

[31]  Christian Kreuzer,et al.  Optimality of an adaptive finite element method for the p-Laplacian equation , 2012 .

[32]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[33]  Michael Karkulik,et al.  Quasi-optimal Convergence Rate for an Adaptive Boundary Element Method , 2013, SIAM J. Numer. Anal..

[34]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[35]  Michael Karkulik,et al.  On 2D Newest Vertex Bisection: Optimality of Mesh-Closure and H1-Stability of L2-Projection , 2013 .

[36]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods for General Second Order Linear Elliptic PDEs , 2005, SIAM J. Numer. Anal..

[37]  Carsten Carstensen,et al.  A posteriori error estimates for boundary element methods , 1995 .

[38]  Kunibert G. Siebert,et al.  A convergence proof for adaptive finite elements without lower bound , 2011 .

[39]  R. Durán,et al.  Error estimators for nonconforming finite element approximations of the Stokes problem , 1995 .

[40]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[41]  Michael Karkulik,et al.  Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, part I: weakly-singular integral equation , 2014 .

[42]  Carsten Carstensen,et al.  Efficiency of a posteriori BEM-error estimates for first-kind integral equations on quasi-uniform meshes , 1996, Math. Comput..

[43]  Carsten Carstensen,et al.  An Adaptive Mesh-Refining Algorithm Allowing for an H1 Stable L2 Projection onto Courant Finite Element Spaces , 2004 .

[44]  Carsten Carstensen,et al.  An oscillation-free adaptive FEM for symmetric eigenvalue problems , 2011, Numerische Mathematik.

[45]  Carsten Carstensen,et al.  Convergence analysis of an adaptive nonconforming finite element method , 2006, Numerische Mathematik.

[46]  R. Nochetto,et al.  Theory of adaptive finite element methods: An introduction , 2009 .

[47]  Hsu-Shih Shih,et al.  Computers and Mathematics with Applications , 2008 .

[48]  Christian Kreuzer,et al.  Linear Convergence of an Adaptive Finite Element Method for the p-Laplacian Equation , 2008, SIAM J. Numer. Anal..

[49]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[50]  Dirk Praetorius,et al.  Estimator reduction and convergence of adaptive BEM , 2012, Applied numerical mathematics : transactions of IMACS.

[51]  Carsten Carstensen,et al.  The Adaptive Nonconforming FEM for the Pure Displacement Problem in Linear Elasticity is Optimal and Robust , 2012, SIAM J. Numer. Anal..

[52]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.

[53]  Carsten Carstensen,et al.  Convergence analysis of a conforming adaptive finite element method for an obstacle problem , 2007, Numerische Mathematik.

[54]  Christian Kreuzer,et al.  Decay rates of adaptive finite elements with Dörfler marking , 2011, Numerische Mathematik.

[55]  Kunibert G. Siebert,et al.  A BASIC CONVERGENCE RESULT FOR CONFORMING ADAPTIVE FINITE ELEMENTS , 2008 .

[56]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[57]  Carsten Carstensen,et al.  Residual-based a posteriori error estimate for hypersingular equation on surfaces , 2004, Numerische Mathematik.

[58]  Jinchao Xu,et al.  Numerische Mathematik Convergence and optimal complexity of adaptive finite element eigenvalue computations , 2022 .

[59]  I. Babuska,et al.  Analysis of Optimal Finite Element Meshes in R1 , 1979 .

[60]  Michael Feischl,et al.  Convergence of adaptive FEM for elliptic obstacle problems , 2011 .

[61]  Jianguo Huang,et al.  Convergence and complexity of arbitrary order adaptive mixed element methods for the Poisson equation , 2012 .

[62]  Long Chen,et al.  Convergence and optimality of adaptive mixed finite element methods , 2010, Math. Comput..

[63]  Xuying Zhao,et al.  Convergence of a standard adaptive nonconforming finite element method with optimal complexity , 2010 .

[64]  S. Repin A Posteriori Estimates for Partial Differential Equations , 2008 .

[65]  Carsten Carstensen,et al.  A unifying theory of a posteriori finite element error control , 2005, Numerische Mathematik.

[66]  Carsten Carstensen,et al.  Error reduction and convergence for an adaptive mixed finite element method , 2006, Math. Comput..

[67]  Stefan A. Funken,et al.  Efficient implementation of adaptive P1-FEM in Matlab , 2011, Comput. Methods Appl. Math..

[68]  Carsten Carstensen,et al.  An Adaptive Finite Element Eigenvalue Solver of Asymptotic Quasi-Optimal Computational Complexity , 2012, SIAM J. Numer. Anal..

[69]  Michael Karkulik,et al.  Inverse estimates for elliptic boundary integral operators and their application to the adaptive coupling of FEM and BEM , 2012, 1211.4360.

[70]  Ricardo H. Nochetto,et al.  Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..

[71]  Andreas Veeser,et al.  LOCALLY EFFICIENT AND RELIABLE A POSTERIORI ERROR ESTIMATORS FOR DIRICHLET PROBLEMS , 2006 .

[72]  Rob P. Stevenson,et al.  An Optimal Adaptive Finite Element Method for the Stokes Problem , 2008, SIAM J. Numer. Anal..

[73]  Carsten Carstensen,et al.  Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis , 2004, Numerische Mathematik.

[74]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[75]  Ronald H. W. Hoppe,et al.  Adaptive Multilevel Techniques for Mixed Finite Element Discretizations of Elliptic Boundary Value Problems , 1997 .

[76]  Jens Markus Melenk,et al.  Institute for Analysis and Scientific Computing , 2015 .

[77]  Pedro Morin,et al.  Quasi-optimal convergence rate of an AFEM for quasi-linear problems , 2010, 1010.1251.

[78]  Christian Kreuzer,et al.  Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..

[79]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..

[80]  Carsten Carstensen,et al.  Adaptive Boundary Element Methods for Some First Kind Integral Equations , 1996 .

[81]  Michael Feischl,et al.  Each H1/2–stable projection yields convergence and quasi–optimality of adaptive FEM with inhomogeneous Dirichlet data in Rd , 2013 .

[82]  Jun Hu,et al.  New a posteriori error estimate and quasi-optimal convergence of the adaptive nonconforming Wilson element , 2014, J. Comput. Appl. Math..

[83]  Serge Nicaise,et al.  Adaptive finite element methods for elliptic problems: Abstract framework and applications , 2010 .

[84]  R. Durán,et al.  A posteriori error estimators for nonconforming finite element methods , 1996 .

[85]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[86]  Rob P. Stevenson,et al.  Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..

[87]  Michael Feischl,et al.  Convergence of some adaptive FEM-BEM coupling for elliptic but possibly nonlinear interface problems , 2012 .

[88]  Marcus Page Schätzerreduktion und Konvergenz adaptiver FEM für Hindernisprobleme , 2010 .

[89]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[90]  Carsten Carstensen,et al.  An a posteriori error estimate for a first-kind integral equation , 1997, Math. Comput..

[91]  Michael Karkulik,et al.  On 2D newest vertex bisection: Optimality of mesh-closure and H 1 -stability of , 2012 .

[92]  Carsten Carstensen,et al.  Quasi-optimal Adaptive Pseudostress Approximation of the Stokes Equations , 2013, SIAM J. Numer. Anal..

[93]  Shipeng Mao,et al.  A Convergent Nonconforming Adaptive Finite Element Method with Quasi-Optimal Complexity , 2010, SIAM J. Numer. Anal..

[94]  R. Hoppe,et al.  A review of unified a posteriori finite element error control , 2012 .

[95]  Wolfgang L. Wendland,et al.  Boundary integral equations , 2008 .

[96]  Christoph Ortner,et al.  Convergence of simple adaptive Galerkin schemes based on h − h/2 error estimators , 2010, Numerische Mathematik.

[97]  Ricardo H. Nochetto,et al.  Quasioptimal cardinality of AFEM driven by nonresidual estimators , 2012 .

[98]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[99]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[100]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[101]  Carsten Carstensen,et al.  A posteriori error estimates for nonconforming finite element methods , 2002, Numerische Mathematik.

[102]  Carsten Carstensen,et al.  An experimental survey of a posteriori Courant finite element error control for the Poisson equation , 2001, Adv. Comput. Math..

[103]  Tsogtgerel Gantumur,et al.  Adaptive boundary element methods with convergence rates , 2011, Numerische Mathematik.

[104]  Dongho Kim,et al.  A Priori and A Posteriori Pseudostress-velocity Mixed Finite Element Error Analysis for the Stokes Problem , 2011, SIAM J. Numer. Anal..

[105]  Ricardo H. Nochetto,et al.  An Adaptive Uzawa FEM for the Stokes Problem: Convergence without the Inf-Sup Condition , 2002, SIAM J. Numer. Anal..

[106]  L. Evans,et al.  Partial Differential Equations , 1941 .

[107]  Carsten Carstensen,et al.  Numerische Mathematik A posteriori error estimate and h-adaptive algorithm on surfaces for Symm ’ s integral equation , 2001 .

[108]  Jun Hu,et al.  Convergence and Optimality of the Adaptive Nonconforming Linear Element Method for the Stokes Problem , 2012, Journal of Scientific Computing.

[109]  R. Rodríguez Some remarks on Zienkiewicz‐Zhu estimator , 1994 .

[110]  Ricardo H. Nochetto,et al.  Primer of Adaptive Finite Element Methods , 2011 .

[111]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .