Improvements in 3-node triangular shell elements

Low-order triangular finite shell elements are computationally economical and easy to implement, but often exhibit very slow convergence. Two new membrane formulations for triangular shell elements are examined which rectify these drawbacks. The first element is based on the Marguerre shallow shell theory and a strain projection method that eliminates spurious membrane strain energy. Resulting expressions are provided in an explicit form for easy implementation of the element. The second element is based on a linear membrane field governed by normal rotations and reduced quadrature. The difficulties with shell-normal rotations are analysed and a method for omitting these rotations while preserving rigid body motion is presented and tested. Finally, a set of test problems are examined which show the importance of mesh patterns and degrees-of-freedom per node on triangular element performance.

[1]  Wing Kam Liu,et al.  Stress projection for membrane and shear locking in shell finite elements , 1985 .

[2]  T. Belytschko,et al.  A flat triangular shell element with improved membrane interpolation , 1985 .

[3]  R. L. Harder,et al.  A proposed standard set of problems to test finite element accuracy , 1985 .

[4]  Ted Belytschko,et al.  A simple triangular curved shell element , 1984 .

[5]  Jean-Louis Batoz,et al.  Evaluation of a new quadrilateral thin plate bending element , 1982 .

[6]  Jean-Louis Batoz,et al.  An explicit formulation for an efficient triangular plate‐bending element , 1982 .

[7]  Richard H. Macneal,et al.  Derivation of element stiffness matrices by assumed strain distributions , 1982 .

[8]  Sergio Idelsohn,et al.  A family of conforming finite elements for deep shell analysis , 1982 .

[9]  T. Belytschko,et al.  Membrane Locking and Reduced Integration for Curved Elements , 1982 .

[10]  Gangan Prathap,et al.  Reduced integration and the shear-flexible beam element , 1982 .

[11]  Thomas J. R. Hughes,et al.  Nonlinear finite element analysis of shells: Part I. three-dimensional shells , 1981 .

[12]  Sergio Idelsohn,et al.  On the use of deep, shallow or flat shell finite elements for the analysis of thin shell structures , 1981 .

[13]  Klaus-Jürgen Bathe,et al.  A study of three‐node triangular plate bending elements , 1980 .

[14]  G. A. Mohr,et al.  Numerically integrated triangular element for doubly curved thin shells , 1980 .

[15]  H. Parisch,et al.  A critical survey of the 9-node degenerated shell element with special emphasis on thin shell application and reduced integration , 1979 .

[16]  John Argyris,et al.  A simple triangular facet shell element with applications to linear and non-linear equilibrium and elastic stability problems , 1977 .

[17]  D. J. Dawe,et al.  High-order triangular finite element for shell analysis , 1975 .

[18]  D. G. Ashwell The behaviour with diminishing curvature of strain-based arch finite elements , 1973 .

[19]  John Argyris,et al.  On the application of the SHEBA shell element , 1972 .

[20]  D J Dawe,et al.  Shell analysis using a simple facet element , 1972 .

[21]  A. B. Sabir,et al.  A NEW CYLINDRICAL SHELL FINITE ELEMENT BASED ON SIMPLE INDEPENDENT STRAIN FUNCTIONS , 1972 .

[22]  O. C. Zienkiewicz,et al.  Reduced integration technique in general analysis of plates and shells , 1971 .

[23]  G. M. Lindberg,et al.  A high-precision triangular cylindrical shell finite element , 1971 .

[24]  G. Dupuis,et al.  A curved finite element for thin elastic shells , 1970 .

[25]  G. Dhatt,et al.  An efficient triangular shell element , 1970 .

[26]  C. A. Brebbia,et al.  A comparison of recent shallow shell finite-element analyses , 1970 .

[27]  G. M. Lindberg,et al.  A shallow shell finite element of triangular shape , 1970 .

[28]  O. C. Zienkiewicz,et al.  Analysis of thick and thin shell structures by curved finite elements , 1970 .

[29]  S. Kelsey,et al.  Triangular Plate Bending Elements with Enforced Compatibility , 1970 .

[30]  E. Kosko,et al.  Static and dynamic applications of a high- precision triangular plate bending element , 1969 .

[31]  R Dungar,et al.  Triangular finite elements of variable thickness and their application to plate and shell problems , 1969 .

[32]  D. Krajcinovic,et al.  Stability of straight bars subjected to repeated impulsive compression. , 1968 .

[33]  L. R. Herrmann,et al.  A finite-element analysis for thin shells. , 1968 .

[34]  R. T. Severn,et al.  Vibration of plate and shell structures using triangular finite elements , 1967 .

[35]  Senol Utku,et al.  Stiffness matrices for thin triangular elements of nonzero Gaussian curvature. , 1966 .

[36]  J. H. Argyris,et al.  Matrix displacement analysis of plates and shells , 1966 .

[37]  J. Argyris Matrix Displacement Analysis of Anisotropic Shells by Triangular Elements , 1965, The Journal of the Royal Aeronautical Society.

[38]  Ted Belytschko,et al.  Locking and shear scaling factors in C° bending elements , 1986 .

[39]  D. Allman A compatible triangular element including vertex rotations for plane elasticity analysis , 1984 .

[40]  K. Bathe,et al.  A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .

[41]  G. Mohr A doubly curved isoparametric triangular shell element , 1981 .

[42]  H. Stolarski Objective Strain Acceleration Measures in Nonlinear Analysis of Structures , 1981 .

[43]  M. D. Olson,et al.  A simple flat triangular shell element revisited , 1979 .

[44]  Geir Horrigmoe,et al.  Finite element instability analysis of free-form shells , 1977 .

[45]  Thomas J. R. Hughes,et al.  A simple and efficient finite element for plate bending , 1977 .

[46]  Ray W. Clough,et al.  A finite element approximation for the analysis of thin shells , 1968 .