A Modular Grad-Div Stabilization for the 2D/3D Nonstationary Incompressible Magnetohydrodynamic Equations

In this paper, we study an efficient and modular grad-div stabilization algorithm for the 2D/3D nonstationary incompressible magnetohydrodynamic equations. The considered algorithm is a fully discrete first-order scheme based on the mixed finite element method and does not increase computational time for increasing stabilization parameters. Also, both unconditional stability and convergence analysis are given. Finally, numerical experiments are presented to verify both the numerical theory and efficiency of the presented algorithm.

[1]  Leo G. Rebholz,et al.  Error analysis and iterative solvers for Navier–Stokes projection methods with standard and sparse grad-div stabilization , 2014 .

[2]  M. Olshanskii A low order Galerkin finite element method for the Navier–Stokes equations of steady incompressible flow: a stabilization issue and iterative methods , 2002 .

[3]  L. Rebholz,et al.  On reducing the splitting error in Yosida methods for the Navier–Stokes equations with grad-div stabilization , 2015 .

[4]  Leo G. Rebholz,et al.  Stabilizing poor mass conservation in incompressible flow problems with large irrotational forcing and application to thermal convection , 2012 .

[5]  Leo G. Rebholz,et al.  On the convergence rate of grad-div stabilized Taylor–Hood to Scott–Vogelius solutions for incompressible flow problems , 2011 .

[6]  Hong Zheng,et al.  An Enriched Edge-Based Smoothed FEM for Linear Elastic Fracture Problems , 2017 .

[7]  Daniel Arndt,et al.  Local projection stabilization for the Oseen problem , 2016 .

[8]  P. Davidson An Introduction to Magnetohydrodynamics , 2001 .

[9]  Mine Akbas,et al.  The analogue of grad–div stabilization in DG methods for incompressible flows: Limiting behavior and extension to tensor-product meshes , 2018, Computer Methods in Applied Mechanics and Engineering.

[10]  Yang Yang,et al.  Unconditional stability and error estimates of the modified characteristics FEMs for the time-dependent incompressible MHD equations , 2019, Comput. Math. Appl..

[11]  J. A. Fiordilino,et al.  Numerical Analysis of a BDF2 Modular Grad–Div Stabilization Method for the Navier–Stokes Equations , 2018, J. Sci. Comput..

[12]  Yinnian He,et al.  Unconditional convergence of the Euler semi-implicit scheme for the 3D incompressible MHD equations , 2015 .

[13]  W. Layton,et al.  On the determination of the grad-div criterion , 2017, Journal of Mathematical Analysis and Applications.

[14]  William Layton,et al.  An efficient and modular grad–div stabilization , 2017, Computer Methods in Applied Mechanics and Engineering.

[15]  Florentina Tone,et al.  On the Long-Time H2-Stability of the Implicit Euler Scheme for the 2D Magnetohydrodynamics Equations , 2009, J. Sci. Comput..

[16]  Leo G. Rebholz,et al.  A Connection Between Scott-Vogelius and Grad-Div Stabilized Taylor-Hood FE Approximations of the Navier-Stokes Equations , 2011, SIAM J. Numer. Anal..

[17]  Jiajia Waters,et al.  Sensitivity analysis of the grad-div stabilization parameter in finite element simulations of incompressible flow , 2016, J. Num. Math..

[18]  Maxim A. Olshanskii,et al.  Grad-div stablilization for Stokes equations , 2003, Math. Comput..

[19]  Naveed Ahmed On the grad-div stabilization for the steady Oseen and Navier-Stokes equations , 2017 .

[20]  Juan Vicente Gutiérrez-Santacreu,et al.  Unconditionally stable operator splitting algorithms for the incompressible magnetohydrodynamics system discretized by a stabilized finite element formulation based on projections , 2013 .

[21]  Yinnian He,et al.  On an efficient second order backward difference Newton scheme for MHD system , 2018 .

[22]  J. Zou,et al.  A priori estimates and optimal finite element approximation of the MHD flow in smooth domains , 2018 .

[23]  G. Matthies,et al.  Grad-div stabilized discretizations on S-type meshes for the Oseen problem , 2018 .

[24]  Li Shan,et al.  Numerical analysis of the Crank–Nicolson extrapolation time discrete scheme for magnetohydrodynamics flows , 2015 .

[25]  Maxim A. Olshanskii,et al.  Grad–div stabilization and subgrid pressure models for the incompressible Navier–Stokes equations , 2009 .

[26]  Guo-Dong Zhang,et al.  Second order unconditionally convergent and energy stable linearized scheme for MHD equations , 2017, Advances in Computational Mathematics.

[27]  Yinnian He Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations , 2015 .

[28]  Leo G. Rebholz,et al.  A connection between coupled and penalty projection timestepping schemes with FE spatial discretization for the Navier–Stokes equations , 2017, J. Num. Math..

[29]  Yinnian He,et al.  Optimal convergence analysis of Crank-Nicolson extrapolation scheme for the three-dimensional incompressible magnetohydrodynamics , 2018, Comput. Math. Appl..

[30]  Volker John,et al.  Analysis of the grad-div stabilization for the time-dependent Navier–Stokes equations with inf-sup stable finite elements , 2016, Adv. Comput. Math..

[31]  P. Joly,et al.  A Preconditioned Semi-Implicit Method for Magnetohydrodynamics Equations , 1999, SIAM J. Sci. Comput..

[32]  W. Habashi,et al.  A finite element method for magnetohydrodynamics , 2001 .

[33]  T. Hughes,et al.  Two classes of mixed finite element methods , 1988 .

[34]  Volker John,et al.  On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows , 2015, SIAM Rev..

[35]  Leo G. Rebholz,et al.  On a reduced sparsity stabilization of grad–div type for incompressible flow problems , 2013 .

[36]  O. Ladyzhenskaya,et al.  On the global unique solvability of initial-boundary value problems for the coupled modified Navier-Stokes and Maxwell equations , 2004 .

[37]  Volker John,et al.  On the parameter choice in grad-div stabilization for the Stokes equations , 2014, Adv. Comput. Math..

[38]  T. Lelièvre,et al.  Mathematical Methods for the Magnetohydrodynamics of Liquid Metals , 2006 .

[39]  Yinnian He,et al.  Stability and Error Analysis for the First-Order Euler Implicit/Explicit Scheme for the 3D MHD Equations , 2018 .

[40]  Volker John,et al.  Grad-div Stabilization for the Evolutionary Oseen Problem with Inf-sup Stable Finite Elements , 2015, J. Sci. Comput..

[41]  Yinnian He,et al.  Convergence analysis of three finite element iterative methods for the 2D/3D stationary incompressible magnetohydrodynamics , 2014 .

[42]  A. Prohl Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system , 2008 .

[43]  Leo G. Rebholz,et al.  A subgrid stabilization finite element method for incompressible magnetohydrodynamics , 2013, Int. J. Comput. Math..

[44]  Jian Li,et al.  An efficient two-level algorithm for the 2D/3D stationary incompressible magnetohydrodynamics based on the finite element method , 2018, International Communications in Heat and Mass Transfer.