Edinburgh Block matrix formulations for evolving networks

. Many types of pairwise interaction take the form of a fixed set of nodes with edges that appear and disappear over time. In the case of discrete-time evolution, the resulting evolving network may be represented by a time-ordered sequence of adjacency matrices. We consider here the issue of representing the system as a single, higher dimensional block matrix, built from the individual time-slices. We focus on the task of computing network centrality measures. From a modeling perspective, we show that there is a suitable block formulation that allows us to recover dynamic centrality measures respecting time’s arrow. From a computational perspective, we show that the new block formulation leads to the design of more effective numerical algorithms.

[1]  P. Joyce Matrices , 2018, Numerical Methods in Physics with Python.

[2]  Mason A. Porter,et al.  Eigenvector-Based Centrality Measures for Temporal Networks , 2015, Multiscale Model. Simul..

[3]  Alexander V. Mantzaris,et al.  Asymmetry through time dependency , 2016 .

[4]  Desmond J. Higham,et al.  Betweenness in time dependent networks , 2015 .

[5]  Z. Wang,et al.  The structure and dynamics of multilayer networks , 2014, Physics Reports.

[6]  Peter Grindrod,et al.  A dynamical systems view of network centrality , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[7]  Todd Graham,et al.  Discursive Equality and Everyday Talk Online: The Impact of "Superparticipants" , 2014, J. Comput. Mediat. Commun..

[8]  Mason A. Porter,et al.  Multilayer networks , 2013, J. Complex Networks.

[9]  Jari Saramäki,et al.  Temporal Networks , 2011, Encyclopedia of Social Network Analysis and Mining.

[10]  Lothar Reichel,et al.  Block Gauss and Anti-Gauss Quadrature with Application to Networks , 2013, SIAM J. Matrix Anal. Appl..

[11]  Alexander V. Mantzaris,et al.  Discovering and validating influence in a dynamic online social network , 2013, Social Network Analysis and Mining.

[12]  Miguel Romance,et al.  Eigenvector centrality of nodes in multiplex networks , 2013, Chaos.

[13]  Michele Benzi,et al.  Total communicability as a centrality measure , 2013, J. Complex Networks.

[14]  Peter Grindrod,et al.  A Matrix Iteration for Dynamic Network Summaries , 2013, SIAM Rev..

[15]  Peter Grindrod,et al.  Bistability through Triadic Closure , 2012, Internet Math..

[16]  Michele Benzi,et al.  MATRIX FUNCTIONS , 2006 .

[17]  Charles Van Loan,et al.  Block Tensor Unfoldings , 2011, SIAM J. Matrix Anal. Appl..

[18]  Mark C. Parsons,et al.  Communicability across evolving networks. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[20]  Desmond J. Higham,et al.  Network Properties Revealed through Matrix Functions , 2010, SIAM Rev..

[21]  Noshir S. Contractor,et al.  The Social Behaviors of Experts in Massive Multiplayer Online Role-Playing Games , 2009, 2009 International Conference on Computational Science and Engineering.

[22]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[23]  Desmond J. Higham,et al.  CONTEST: A Controllable Test Matrix Toolbox for MATLAB , 2009, TOMS.

[24]  Jean Scholtz,et al.  VAST 2008 Challenge: Introducing mini-challenges , 2008, 2008 IEEE Symposium on Visual Analytics Science and Technology.

[25]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[26]  Stephen P. Borgatti,et al.  Centrality and network flow , 2005, Soc. Networks.

[27]  Qiang Ye,et al.  ABLE: An Adaptive Block Lanczos Method for Non-Hermitian Eigenvalue Problems , 1999, SIAM J. Matrix Anal. Appl..

[28]  Gene H. Golub,et al.  Applications and Computation of Orthogonal Polynomials , 1999 .

[29]  Lothar Reichel,et al.  Applications of Anti-Gauss Quadrature Rules in Linear Algebra , 1999 .

[30]  Dirk P. Laurie,et al.  Anti-Gaussian quadrature formulas , 1996, Math. Comput..