Computers and Mathematics with Applications Constructing Nonlinear Discrete Integrable Hamiltonian Couplings

Beginning with Lax pairs from special non-semisimple matrix Lie algebras, we establish a scheme for constructing nonlinear discrete integrable couplings. Discrete variational identities over the associated loop algebras are used to build Hamiltonian structures for the resulting integrable couplings. We illustrate the application of the scheme by means of an enlarged Volterra spectral problem and present an example of nonlinear discrete integrable Hamiltonian couplings for the Volterra lattice equations.

[1]  Zuo-nong Zhu The (2+1)-dimensional nonisospectral relativistic Toda hierarchy related to the generalized discrete Painlevé hierarchy , 2007 .

[2]  Wenxiu Ma,et al.  Algebraic Structure of Discrete Zero Curvature Equations and Master Symmetries of Discrete Evolution Equations , 1998, solv-int/9809009.

[3]  Wen-Xiu Ma,et al.  ADJOINT SYMMETRY CONSTRAINTS OF MULTICOMPONENT AKNS EQUATIONS , 2002 .

[4]  W. Ma Multi-component bi-Hamiltonian Dirac integrable equations , 2009 .

[5]  MA W.X.,et al.  Integrable Theory of the Perturbation Equations , 2004 .

[6]  Wen-Xiu Ma,et al.  Enlarging spectral problems to construct integrable couplings of soliton equations , 2003 .

[7]  W. Ma Variational identities and Hamiltonian structures , 2010 .

[8]  W. Ma A bi-Hamiltonian formulation for triangular systems by perturbations , 2001, nlin/0112009.

[9]  W. Ma Integrable couplings of soliton equations by perturbations I: A general theory and application to the KDV hierarchy , 1999, solv-int/9912004.

[10]  Wen-Xiu Ma Integrable couplings of vector AKNS soliton equations , 2005 .

[11]  Wen-Xiu Ma,et al.  Variational identities and applications to Hamiltonian structures of soliton equations , 2009 .

[12]  New integrable hierarchies from vertex operator representations of polynomial Lie algebras , 2004, nlin/0405040.

[13]  Xi-Xiang Xu,et al.  A modified Toda spectral problem and its hierarchy of bi-Hamiltonian lattice equations , 2004 .

[14]  W. Ma A Hamiltonian structure associated with a matrix spectral problem of arbitrary-order , 2007 .

[15]  Johan van de Leur Bäcklund transformations for new integrable hierarchies related to the polynomial Lie algebra gl∞(n) , 2007 .

[16]  Wen-Xiu Ma,et al.  THE BI-HAMILTONIAN STRUCTURE OF THE PERTURBATION EQUATIONS OF THE KDV HIERARCHY , 1996 .

[17]  W. Ma A simple scheme for generating nonisospectral flows from the zero curvature representation , 1993 .

[18]  Yi Zhang,et al.  The multi-component coupled Burgers hierarchy of soliton equations and its multi-component integrable couplings system with two arbitrary functions , 2004 .

[19]  Wenxiu Ma,et al.  Hamiltonian and quasi-Hamiltonian structures associated with semi-direct sums of Lie algebras , 2006 .

[20]  Wen-Xiu Ma,et al.  Semidirect sums of Lie algebras and discrete integrable couplings , 2006 .

[21]  Huanhe Dong,et al.  Two integrable couplings of the Tu hierarchy and their Hamiltonian structures , 2008, Comput. Math. Appl..

[22]  Wen-Xiu Ma,et al.  Semi-direct sums of Lie algebras and continuous integrable couplings , 2006, nlin/0603064.

[23]  Bilinear forms and Backlund transformations of the perturbation systems [rapid communication] , 2005 .

[24]  Zuo-nong Zhu,et al.  New integrable lattice hierarchies , 2006 .

[25]  Wen-Xiu Ma,et al.  COUPLING INTEGRABLE COUPLINGS , 2009 .

[26]  T Gui-zhang,et al.  A trace identity and its applications to the theory of discrete integrable systems , 1990 .

[27]  Yi Zhang,et al.  Component-trace identities for Hamiltonian structures , 2010 .

[28]  Xi-Xiang Xu,et al.  A hierarchy of nonlinear lattice soliton equations, its integrable coupling systems and infinitely many conservation laws , 2006 .

[29]  Wen-Xiu Ma,et al.  A discrete variational identity on semi-direct sums of Lie algebras , 2007, 0711.1147.