High-yield transfer printing of metal-insulator-metal nanodiodes.

Nanoscale metal-insulator-metal (MIM) diodes represent important devices in the fields of electronic circuits, detectors, communication, and energy, as their cutoff frequencies may extend into the "gap" between the electronic microwave range and the optical long-wave infrared regime. In this paper, we present a nanotransfer printing method, which allows the efficient and simultaneous fabrication of large-scale arrays of MIM nanodiode stacks, thus offering the possibility of low-cost mass production. In previous work, we have demonstrated the successful transfer and electrical characterization of macroscopic structures. Here, we demonstrate for the first time the fabrication of several millions of nanoscale diodes with a single transfer-printing step using a temperature-enhanced process. The electrical characterization of individual MIM nanodiodes was performed using a conductive atomic force microscope (AFM) setup. Our analysis shows that the tunneling current is the dominant conduction mechanism, and the electrical measurement data agree well with experimental data on previously fabricated microscale diodes and numerical simulations.

[1]  R. Fowler,et al.  Electron Emission in Intense Electric Fields , 1928 .

[2]  G. Moddel,et al.  Applicability of Metal/Insulator/Metal (MIM) Diodes to Solar Rectennas , 2011, IEEE Journal of Photovoltaics.

[3]  Sachit Grover,et al.  Engineering the current-voltage characteristics of metal-insulator-metal diodes using double-insulator tunnel barriers , 2012 .

[4]  J. Robertson Band offsets and work function control in field effect transistors , 2009 .

[5]  Modulation transfer function for infrared reflectarrays. , 2011, Applied optics.

[6]  Wilkins,et al.  Resonant tunneling with electron-phonon interaction: An exactly solvable model. , 1988, Physical review letters.

[7]  Gregg B Fields,et al.  Correlated structural kinetics and retarded solvent dynamics at the metalloprotease active site , 2011, Nature Structural &Molecular Biology.

[8]  Xicheng Zhang,et al.  Materials for terahertz science and technology , 2002, Nature materials.

[9]  L. Novotný,et al.  Antennas for light , 2011 .

[10]  John A. Rogers,et al.  Electrical Contacts to Molecular Layers by Nanotransfer Printing , 2003 .

[11]  Prashant V. Kamat,et al.  Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters , 2008 .

[12]  T. Someya,et al.  Flexible organic transistors and circuits with extreme bending stability. , 2010, Nature materials.

[13]  Yang Yang,et al.  Efficiency enhancement in organic solar cells with ferroelectric polymers. , 2011, Nature materials.

[14]  Yucheng Ding,et al.  A metal/insulator/metal field-emission cannon , 2011, Nanotechnology.

[15]  Ekenberg Nonparabolicity effects in a quantum well: Sublevel shift, parallel mass, and Landau levels. , 1989, Physical review. B, Condensed matter.

[16]  G. Zou,et al.  Preparation and characterization of lamellar-like Mg(OH)2 nanostructures via natural oxidation of Mg metal in formamide/water mixture , 2007 .

[17]  Wolfgang Porod,et al.  Controlled etching and regrowth of tunnel oxide for antenna-coupled metal-oxide-metal diodes , 2009 .

[18]  W. Porod,et al.  Printed array of thin-dielectric metal-oxide-metal (MOM) tunneling diodes , 2011 .

[19]  R. Blick,et al.  Coulomb blockade in a coupled nanomechanical electron shuttle. , 2011, ACS nano.

[20]  Wolfgang Porod,et al.  Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes , 2009 .

[21]  Eun Kyung Lee,et al.  Full-colour quantum dot displays fabricated by transfer printing , 2011 .

[22]  L Jay Guo,et al.  Organic thin film transistors and polymer light-emitting diodes patterned by polymer inking and stamping , 2008 .

[23]  J A Bean,et al.  Performance Optimization of Antenna-Coupled ${\rm Al}/{\rm AlO}_{x}/{\rm Pt}$ Tunnel Diode Infrared Detectors , 2011, IEEE Journal of Quantum Electronics.

[24]  Javier Alda,et al.  Optical antennas for nano-photonic applications , 2005 .

[25]  C De Angelis,et al.  Flared Monopole Antennas for 10-$\mu{\rm m}$ Radiation , 2011, IEEE Journal of Quantum Electronics.

[26]  Glenn D Boreman,et al.  Directional control of infrared antenna-coupled tunnel diodes. , 2010, Optics express.

[27]  J. Robertson Band offsets of wide-band-gap oxides and implications for future electronic devices , 2000 .

[28]  Prakash Periasamy,et al.  Fabrication and Characterization of MIM Diodes Based on Nb/Nb2O5 Via a Rapid Screening Technique , 2011, Advanced materials.

[29]  J. Simmons Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film , 1963 .

[30]  C. Jirauschek,et al.  Accuracy of Transfer Matrix Approaches for Solving the Effective Mass SchrÖdinger Equation , 2009, IEEE Journal of Quantum Electronics.

[31]  M. Farzaneh,et al.  Hydrophobic properties of surfaces coated with fluoroalkylsiloxane and alkylsiloxane monolayers , 2004 .

[32]  Jurriaan Schmitz,et al.  A silicon-based electrical source of surface plasmon polaritons. , 2010, Nature materials.

[33]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[34]  J. Rogers,et al.  Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing. , 2011, Nature nanotechnology.

[35]  H. Klauk,et al.  Ultralow-power organic complementary circuits , 2007, Nature.

[36]  Moon Gyu Sung,et al.  Scanning noise microscopy on graphene devices. , 2011, ACS nano.

[37]  P. Lugli,et al.  Monte Carlo Simulation of Leakage Currents in $ \hbox{TiN/ZrO}_{2}/\hbox{TiN}$ Capacitors , 2011, IEEE Transactions on Electron Devices.

[38]  P. Laporta,et al.  High-precision molecular interrogation by direct referencing of a quantum-cascade-laser to a near-infrared frequency comb. , 2011, Optics express.

[39]  A. Ionescu,et al.  Nanomechanical silicon resonators with intrinsic tunable gain and sub-nW power consumption. , 2012, ACS nano.

[40]  L. Esaki,et al.  Tunneling in a finite superlattice , 1973 .

[41]  W. Porod,et al.  Nano Antenna Array for Terahertz Detection , 2011, IEEE Transactions on Microwave Theory and Techniques.

[42]  Paolo Lugli,et al.  Modeling of leakage currents in high-κ dielectrics: Three-dimensional approach via kinetic Monte Carlo , 2010 .

[43]  S. Matsui,et al.  Durability of antisticking layer against heat in nanoimprinting evaluated using scanning probe microscopy , 2009 .

[44]  P. Lugli,et al.  Temperature Enhanced Large Area Nano Transfer Printing on Si/SiO2 Substrates Using Si Wafer Stamps , 2011 .

[45]  Paolo Lugli,et al.  Efficient indium-tin-oxide (ITO) free top-absorbing organic photodetector with highly transparent polymer top electrode , 2011 .

[46]  Paolo Lugli,et al.  Monte Carlo simulation of leakage currents in TiN/ZrO2/TiN capacitors , 2011 .

[47]  Yonggang Huang,et al.  Transfer printing by kinetic control of adhesion to an elastomeric stamp , 2006 .