Concurrence in the framework of coherent states

The concurrence of a two-qubit nonorthogonal pure state is determined through the construction of this state in the language of spin coherent states. The generalization of this method to the case of a class of mixed states is given. The concurrence in this case is nothing but a function of the amplitude of the spin coherent states, it is shown also that probability present an interesting behavior.

[1]  A. Uhlmann Fidelity and Concurrence of conjugated states , 1999, quant-ph/9909060.

[2]  M. Kus,et al.  Measures and dynamics of entangled states , 2005, quant-ph/0505162.

[3]  N. Christensen,et al.  Potential multiparticle entanglement measure , 2000, quant-ph/0010052.

[4]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[5]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[6]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[7]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[8]  E. Schrödinger Discussion of Probability Relations between Separated Systems , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[10]  J. Eisert,et al.  A comparison of entanglement measures , 1998, quant-ph/9807034.

[11]  G. Milburn,et al.  Universal state inversion and concurrence in arbitrary dimensions , 2001, quant-ph/0102040.

[12]  A. Uhlmann,et al.  Entangled three-qubit states without concurrence and three-tangle. , 2006, Physical review letters.

[13]  Terhal,et al.  Entanglement of formation for isotropic states , 2000, Physical review letters.

[14]  A. Miranowicz,et al.  Ordering two-qubit states with concurrence and negativity , 2004, quant-ph/0404053.

[15]  M. Lewenstein,et al.  Volume of the set of separable states , 1998, quant-ph/9804024.

[16]  T. Osborne Entanglement measure for rank-2 mixed states , 2002, quant-ph/0203087.

[17]  C. Caves,et al.  Concurrence-based entanglement measures for isotropic states , 2003 .

[18]  M. Benedict,et al.  Coherent states and global entanglement in an N qubit system , 2007, 0709.3728.

[19]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[20]  Construction of coherent states for physical algebraic systems (7 pages) , 2004, math-ph/0408030.

[21]  Barry C. Sanders,et al.  Entangled coherent states for systems with SU(2) and SU(1,1) symmetries , 2000 .

[22]  R. Mcweeny On the Einstein-Podolsky-Rosen Paradox , 2000 .

[23]  Wang An-min A Simplified and Obvious Expression of Concurrence in Wootters' Measure of Entanglement of a Pair of Qubits , 2003 .

[24]  R. Jozsa,et al.  Quantum Computation and Shor's Factoring Algorithm , 1996 .

[25]  E. Schrödinger Der stetige Übergang von der Mikro- zur Makromechanik , 1926, Naturwissenschaften.

[26]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[27]  H. Eleuch,et al.  Nonlinear dissipation and the quantum noise of light in semiconductor microcavities , 2004 .

[28]  J. Klauder,et al.  COHERENT STATES: APPLICATIONS IN PHYSICS AND MATHEMATICAL PHYSICS , 1985 .

[29]  William K. Wootters,et al.  Entanglement of formation and concurrence , 2001, Quantum Inf. Comput..

[30]  A. Perelomov Generalized Coherent States and Their Applications , 1986 .

[31]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[32]  W. Wootters,et al.  Distributed Entanglement , 1999, quant-ph/9907047.

[33]  S. Popescu,et al.  Thermodynamics and the measure of entanglement , 1996, quant-ph/9610044.

[34]  K. Berrada,et al.  ENTANGLEMENT OF TWO-QUBIT NONORTHOGONAL STATES , 2009 .

[35]  Gilles Brassard,et al.  Experimental Quantum Cryptography , 1990, EUROCRYPT.

[36]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[37]  C. Gerry,et al.  Path Integrals and Coherent States of Su(2) and Su(1, 1) , 1992 .

[38]  W. Wootters,et al.  Entanglement of a Pair of Quantum Bits , 1997, quant-ph/9703041.