Super‐simple resolvable balanced incomplete block designs with block size 4 and index 3

The necessary conditions for the existence of a super-simple resolvable balanced incomplete block design on v points with k = 4 and λ = 3, are that v ≥ 8 and v ≡ 0 mod 4. These conditions are shown to be sufficient except for v = 12. © 2003 Wiley Periodicals, Inc.

[1]  Zhenfu Cao,et al.  Super-simple balanced incomplete block designs with block size 4 and index 6 , 2005 .

[2]  Chen Kejun On the existence of super-simple (v,4,4)-BIBDs , 1996 .

[3]  Lie Zhu,et al.  The spectrum of HSOLSSOM(hn) where h is even , 1996, Discret. Math..

[4]  Andries E. Brouwer Mutually orthogonal latin squares , 1978 .

[5]  Christopher A. Rodger,et al.  Linear spaces with many small lines , 1994, Discret. Math..

[6]  Iliya Bluskov,et al.  New upper bounds on the minimum size of covering designs , 1998 .

[7]  Peter Adams,et al.  On the existence of super-simple designs with block size 4 , 1995 .

[8]  Carlos Velarde,et al.  A complete classification of (12,4,3)‐RBIBDs , 2001 .

[9]  C. Colbourn,et al.  The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.

[10]  K. Heinrich,et al.  Super-simple designs with v⩽32 , 2001 .

[11]  Douglas R. Stinson,et al.  Frames with Block Size Four , 1992, Canadian Journal of Mathematics.

[12]  Donald L. Kreher,et al.  Super-simple (v, 5, 2)-designs , 2004, Discret. Appl. Math..

[13]  Gennian Ge,et al.  Some new HSOLSSOMs of types hn and 1m u1 , 2001 .

[14]  Y. Lu,et al.  Existence of whist tournaments with the three-person property 3PWh(v) , 2000, Discret. Appl. Math..

[15]  Abdollah Khodkar,et al.  Various super-simple designs with block size four , 1994, Australas. J Comb..

[16]  Gennian Ge,et al.  Asymptotic results on the existence of 4‐RGDDs and uniform 5‐GDDs , 2005 .

[17]  Gennian Ge,et al.  Some New uniform frames with block size four and index one or three , 2004 .

[18]  Ronald C. Mullin,et al.  On the existence of frames , 1981, Discret. Math..

[19]  Vladimir S. Lebedev,et al.  On optimal superimposed codes , 2004 .

[20]  Christopher A. Rodger,et al.  Existence of certain skew room frames with application to weakly 3-chromatic linear spaces , 1994 .

[21]  Frank E. Bennett,et al.  Holey Steiner pentagon systems , 1999 .

[22]  Hao Shen,et al.  Resolvable Maximum Packings with Quadruples , 2005, Des. Codes Cryptogr..