An Approximate Innovation Method For The Estimation Of Diffusion Processes From Discrete Data

In this paper, an approximate innovation method is introduced for the estimation of diffusion processes, given a set of discrete and noisy observations of some of their components. The method is based on a recent extension of local linearization filters to the general case of continuous-discrete state-space models with multiplicative noise. This filtering method provides adequate approximations for the prediction and filter estimates that are required by the innovation method in the estimation of the unknown parameters and the unobserved component of the diffusion process. The performance of approximate innovation estimators is illustrated by means of numerical simulations. Copyright 2005 Blackwell Publishing Ltd.

[1]  Prakasa Rao Statistical inference for diffusion type processes , 1999 .

[2]  Alois Geyer,et al.  A State-Space Approach to Estimate and Test Multifactor Cox-Ingersoll-Ross Models of the Term Structure , 1999 .

[3]  A. Harvey,et al.  5 Stochastic volatility , 1996 .

[4]  J. C. Jimeneza,et al.  Linear estimation of continuous-discrete linear state space models with multiplicative noise , 2002 .

[5]  Naoki Miura,et al.  A state-space model of the hemodynamic approach: nonlinear filtering of BOLD signals , 2004, NeuroImage.

[6]  Isao Shoji,et al.  A comparative study of maximum likelihood estimators for nonlinear dynamical system models , 1998 .

[7]  D. Talay Numerical solution of stochastic differential equations , 1994 .

[8]  Henrik Madsen,et al.  Estimating parameters in discretely, partially observed stochastic differential equations , 1999 .

[9]  J. C. Jimenez,et al.  Local linearization filters for non-linear continuous-discrete state space models with multiplicative noise , 2003 .

[10]  J. C. Jimenez,et al.  Inference Methods for Discretely Observed Continuous-Time Stochastic Volatility Models: A Commented Overview , 2005 .

[11]  Karl Johan Åström,et al.  On the choice of sampling rates in parametric identification of time series , 1969, Inf. Sci..

[12]  Tohru Ozaki The Local Linearization Filter with Application to Nonlinear System Identifications , 1994 .

[13]  Thomas Kailath,et al.  From Kalman Filtering to Innovations, Martingales, Scattering and Other Nice Things , 1991 .

[14]  James D. Hamilton State-space models , 1994 .

[15]  Jan Nygaard Nielsen,et al.  Parameter estimation in stochastic differential equations: An overview , 2000 .

[16]  T. Ozaki A local linearization approach to nonlinear filtering , 1993 .

[17]  Jan Nygaard Nielsen,et al.  Prediction-based Estimating Functions for Diffusion Processes with Measurement Noise , 2000 .

[18]  Jens Ledet Jensen,et al.  Asymptotic normality of the maximum likelihood estimator in state space models , 1999 .

[19]  Bernard Hanzon,et al.  On some filtering problems arising in mathematical finance , 1998 .

[20]  M. Sørensen,et al.  Prediction-based estimating functions , 2000 .

[21]  Juan C. Jiménez,et al.  Linear estimation of continuous-discrete linear state space models with multiplicative noise , 2002, Syst. Control. Lett..

[22]  T. Kailath Lectures on Wiener and Kalman Filtering , 2003 .

[23]  T. Kailath Some extensions of the innovations theorem , 1971 .

[24]  Tohru Ozaki,et al.  The Role of the Likelihood Function in the Estimation of Chaos Models , 2000 .

[25]  Hermann Singer,et al.  CONTINUOUS-TIME DYNAMICAL SYSTEMS WITH SAMPLED DATA, ERRORS OF MEASUREMENT AND UNOBSERVED COMPONENTS , 1993 .

[26]  J. C. Jimenez,et al.  Local Linearization method for the numerical solution of stochastic differential equations , 1996 .

[27]  Juan C. Jiménez,et al.  Nonlinear EEG analysis based on a neural mass model , 1999, Biological Cybernetics.

[28]  G. Kallianpur Stochastic Filtering Theory , 1980 .

[29]  Angelo Vulpiani,et al.  A GENERAL METHODOLOGY TO PRICE AND HEDGE DERIVATIVES IN INCOMPLETE MARKETS , 1998 .

[30]  Héctor de Arazoza,et al.  Nonlinear Parametric Model Identification Using Genetic Algorithms , 2003, IWANN.

[31]  T. Ozaki,et al.  Use of Stochastic Differential Equation Models in Financial Time Series Analysis : Monitoring and Control of Currencies in Exchange Market , 2003 .

[32]  P. Caines,et al.  Asymptotic normality of prediction error estimators for approximate system models , 1980 .

[33]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[34]  Jan Nygaard Nielsen,et al.  ESTIMATION IN CONTINUOUS-TIME STOCHASTIC VOLATILITY MODELS USING NONLINEAR FILTERS , 2000 .

[35]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[36]  S. Ross,et al.  A theory of the term structure of interest rates'', Econometrica 53, 385-407 , 1985 .

[37]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[38]  Yaozhong Hu Optimal times to observe in the kalman-bucy models , 2000 .

[39]  Fred C. Schweppe,et al.  Evaluation of likelihood functions for Gaussian signals , 1965, IEEE Trans. Inf. Theory.

[40]  T. Alderweireld,et al.  A Theory for the Term Structure of Interest Rates , 2004, cond-mat/0405293.

[41]  Estimation of embedded parameters in stochastic differential equations using discret-time measurements: Part 2: Nonlinear systems , 1998 .

[42]  M. Sørensen,et al.  Martingale estimation functions for discretely observed diffusion processes , 1995 .

[43]  L. Ljung,et al.  Asymptotic normality of prediction error estimators for approximate system models , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[44]  Thomas Kailath,et al.  A view of three decades of linear filtering theory , 1974, IEEE Trans. Inf. Theory.