Tunable spin-polarized correlated states in twisted double bilayer graphene

[1]  Kenji Watanabe,et al.  Untying the insulating and superconducting orders in magic-angle graphene , 2020, Nature.

[2]  Kenji Watanabe,et al.  Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene , 2020, Nature.

[3]  Xiaodong Xu,et al.  Symmetry breaking in twisted double bilayer graphene , 2020, 2002.08904.

[4]  Xiaodong Xu,et al.  Superconductivity without insulating states in twisted bilayer graphene stabilized by monolayer WSe$_2$ , 2020, 2002.03003.

[5]  Kenji Watanabe,et al.  Independent superconductors and correlated insulators in twisted bilayer graphene , 2019, Nature Physics.

[6]  Kenji Watanabe,et al.  The interplay of insulating and superconducting orders in magic-angle graphene bilayers , 2019, 1911.09198.

[7]  Kenji Watanabe,et al.  Magic continuum in twisted bilayer WSe2 , 2019, 1910.12147.

[8]  Kenji Watanabe,et al.  Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices , 2019, Nature.

[9]  Kenji Watanabe,et al.  Correlated Insulating States in Twisted Double Bilayer Graphene. , 2019, Physical review letters.

[10]  J. Zhu,et al.  Intrinsic quantized anomalous Hall effect in a moiré heterostructure , 2019, Science.

[11]  M. Koshino Band structure and topological properties of twisted double bilayer graphene , 2019, Physical Review B.

[12]  P. Kim,et al.  Theory of correlated insulating behaviour and spin-triplet superconductivity in twisted double bilayer graphene , 2019, Nature Communications.

[13]  Kenji Watanabe,et al.  Correlated states in twisted double bilayer graphene , 2019, Nature Physics.

[14]  H. Choi,et al.  Intrinsic band gap and electrically tunable flat bands in twisted double bilayer graphene , 2019, Physical Review B.

[15]  Jeil Jung,et al.  Flat bands in twisted double bilayer graphene , 2019, Physical Review B.

[16]  M. Kastner,et al.  Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene , 2019, Science.

[17]  D. Graf,et al.  Tuning superconductivity in twisted bilayer graphene , 2018, Science.

[18]  Yuan Cao,et al.  Nearly flat Chern bands in moiré superlattices , 2018, Physical Review B.

[19]  T. Koretsune,et al.  Maximally Localized Wannier Orbitals and the Extended Hubbard Model for Twisted Bilayer Graphene , 2018, Physical Review X.

[20]  O. Vafek,et al.  Symmetry, Maximally Localized Wannier States, and a Low-Energy Model for Twisted Bilayer Graphene Narrow Bands , 2018, Physical Review X.

[21]  A. Vishwanath,et al.  Origin of Mott Insulating Behavior and Superconductivity in Twisted Bilayer Graphene , 2018, Physical Review X.

[22]  Feng Wang,et al.  Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice , 2018, Nature Physics.

[23]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[24]  E. Kaxiras,et al.  Correlated insulator behaviour at half-filling in magic-angle graphene superlattices , 2018, Nature.

[25]  P. Kim,et al.  Frictional Magneto-Coulomb Drag in Graphene Double-Layer Heterostructures. , 2016, Physical review letters.

[26]  S. Louie,et al.  Effective mass in bilayer graphene at low carrier densities: The role of potential disorder and electron-electron interaction , 2016, 1611.00414.

[27]  E. Kaxiras,et al.  Superlattice-Induced Insulating States and Valley-Protected Orbits in Twisted Bilayer Graphene. , 2016, Physical review letters.

[28]  S. Banerjee,et al.  van der Waals Heterostructures with High Accuracy Rotational Alignment. , 2016, Nano letters.

[29]  M. R. Norman,et al.  From quantum matter to high-temperature superconductivity in copper oxides , 2015, Nature.

[30]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[31]  Jeil Jung,et al.  Accurate tight-binding models for the π bands of bilayer graphene , 2013, 1309.5429.

[32]  K. L. Shepard,et al.  Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices , 2013, Nature.

[33]  T. Taniguchi,et al.  Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure , 2013, Science.

[34]  P. Moon,et al.  Optical Absorption in Twisted Bilayer Graphene , 2013, 1302.5218.

[35]  F. Guinea,et al.  Cloning of Dirac fermions in graphene superlattices , 2012, Nature.

[36]  M. Koshino,et al.  The electronic properties of bilayer graphene , 2012, Reports on progress in physics. Physical Society.

[37]  S. Julian Viewpoint: Pairing with Spin Fluctuations , 2012 .

[38]  S. Julian Pairing with Spin Fluctuations , 2012 .

[39]  R. Bistritzer,et al.  Moiré bands in twisted double-layer graphene , 2010, Proceedings of the National Academy of Sciences.

[40]  T. Tang,et al.  Direct observation of a widely tunable bandgap in bilayer graphene , 2009, Nature.

[41]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[42]  H. Löhneysen,et al.  Superconductivity on the border of weak itinerant ferromagnetism in UCoGe. , 2007, Physical review letters.

[43]  E. Ressouche,et al.  Coexistence of superconductivity and ferromagnetism in URhGe , 2022 .

[44]  E. Pugh,et al.  Superconductivity on the border of itinerant-electron ferromagnetism in UGe2 , 2000, Nature.

[45]  Kenji Watanabe,et al.  Decoupling superconductivity and correlated insulators in twisted bilayer graphene , 2019 .