Approximation of the p-Stokes Equations with Equal-Order Finite Elements

Non-Newtonian fluid motions are often modeled by the p-Stokes equations with power-law exponent $${p\in(1,\infty)}$$ . In the present paper we study the discretization of the p-Stokes equations with equal-order finite elements. We propose a stabilization scheme for the pressure-gradient based on local projections. For $${p\in(1,\infty)}$$ the well-posedness of the discrete problems is shown and a priori error estimates are proven. For $${p\in(1,2]}$$ the derived a priori error estimates provide optimal rates of convergence with respect to the supposed regularity of the solution. The achieved results are illustrated by numerical experiments.

[1]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[2]  J. Baranger,et al.  Analyse numerique des ecoulements quasi-Newtoniens dont la viscosite obeit a la loi puissance ou la loi de carreau , 1990 .

[3]  Jacques Baranger,et al.  Numerical analysis of quasi-Newtonian flow obeying the power low or the Carreau flow , 1990 .

[4]  Wenbin Liu,et al.  Finite element error analysis of a quasi-Newtonian flow obeying the Carreau or power law , 1993 .

[5]  W. B. Liu,et al.  Quasi-norm Error Bounds for the Nite Element Approximation of a Non-newtonian Ow , 1994 .

[6]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[7]  V. Girault,et al.  Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension , 1994 .

[8]  Kumbakonam R. Rajagopal,et al.  EXISTENCE AND REGULARITY OF SOLUTIONS AND THE STABILITY OF THE REST STATE FOR FLUIDS WITH SHEAR DEPENDENT VISCOSITY , 1995 .

[9]  J. Málek Weak and Measure-valued Solutions to Evolutionary PDEs , 1996 .

[10]  Roland Becker,et al.  A finite element pressure gradient stabilization¶for the Stokes equations based on local projections , 2001 .

[11]  Gunar Matthies,et al.  The Inf-Sup Condition for the Mapped Qk−Pk−1disc Element in Arbitrary Space Dimensions , 2002, Computing.

[12]  Gunar Matthies,et al.  A UNIFIED CONVERGENCE ANALYSIS FOR LOCAL PROJECTION STABILISATIONS APPLIED TO THE OSEEN PROBLEM , 2007 .

[13]  Regularity in Sobolev spaces of steady flows of fluids with shear‐dependent viscosity , 2006 .

[14]  Lars Diening,et al.  Numerische Mathematik Interpolation operators in Orlicz – Sobolev spaces , 2007 .

[15]  Christian Kreuzer,et al.  Linear Convergence of an Adaptive Finite Element Method for the p-Laplacian Equation , 2008, SIAM J. Numer. Anal..

[16]  Lars Diening,et al.  Fractional estimates for non-differentiable elliptic systems with general growth , 2008 .

[17]  L. Berselli,et al.  Existence of Strong Solutions for Incompressible Fluids with Shear Dependent Viscosities , 2010 .

[18]  Lars Diening,et al.  A decomposition technique for John domains , 2010 .

[19]  Lars Diening,et al.  On the Finite Element Approximation of p-Stokes Systems , 2012, SIAM J. Numer. Anal..

[20]  Jan Stebel,et al.  Finite element approximation of flow of fluids with shear-rate- and pressure-dependent viscosity , 2012 .