Approximation of the p-Stokes Equations with Equal-Order Finite Elements
暂无分享,去创建一个
[1] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[2] J. Baranger,et al. Analyse numerique des ecoulements quasi-Newtoniens dont la viscosite obeit a la loi puissance ou la loi de carreau , 1990 .
[3] Jacques Baranger,et al. Numerical analysis of quasi-Newtonian flow obeying the power low or the Carreau flow , 1990 .
[4] Wenbin Liu,et al. Finite element error analysis of a quasi-Newtonian flow obeying the Carreau or power law , 1993 .
[5] W. B. Liu,et al. Quasi-norm Error Bounds for the Nite Element Approximation of a Non-newtonian Ow , 1994 .
[6] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[7] V. Girault,et al. Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension , 1994 .
[8] Kumbakonam R. Rajagopal,et al. EXISTENCE AND REGULARITY OF SOLUTIONS AND THE STABILITY OF THE REST STATE FOR FLUIDS WITH SHEAR DEPENDENT VISCOSITY , 1995 .
[9] J. Málek. Weak and Measure-valued Solutions to Evolutionary PDEs , 1996 .
[10] Roland Becker,et al. A finite element pressure gradient stabilization¶for the Stokes equations based on local projections , 2001 .
[11] Gunar Matthies,et al. The Inf-Sup Condition for the Mapped Qk−Pk−1disc Element in Arbitrary Space Dimensions , 2002, Computing.
[12] Gunar Matthies,et al. A UNIFIED CONVERGENCE ANALYSIS FOR LOCAL PROJECTION STABILISATIONS APPLIED TO THE OSEEN PROBLEM , 2007 .
[13] Regularity in Sobolev spaces of steady flows of fluids with shear‐dependent viscosity , 2006 .
[14] Lars Diening,et al. Numerische Mathematik Interpolation operators in Orlicz – Sobolev spaces , 2007 .
[15] Christian Kreuzer,et al. Linear Convergence of an Adaptive Finite Element Method for the p-Laplacian Equation , 2008, SIAM J. Numer. Anal..
[16] Lars Diening,et al. Fractional estimates for non-differentiable elliptic systems with general growth , 2008 .
[17] L. Berselli,et al. Existence of Strong Solutions for Incompressible Fluids with Shear Dependent Viscosities , 2010 .
[18] Lars Diening,et al. A decomposition technique for John domains , 2010 .
[19] Lars Diening,et al. On the Finite Element Approximation of p-Stokes Systems , 2012, SIAM J. Numer. Anal..
[20] Jan Stebel,et al. Finite element approximation of flow of fluids with shear-rate- and pressure-dependent viscosity , 2012 .