A comparative evaluation of swarm intelligence techniques for solving combinatorial optimization problems

This article presents a critical evaluation of swarm intelligence techniques for solving combinatorial optimization problems. Since, unarguably, the traveling salesman’s problem is the most developed, studied, and popular combinatorial problem, this study uses it as a benchmark. After a number of experimental investigations involving 24 popular but complex benchmark symmetric traveling salesman’s problem instances and 15 asymmetric traveling salesman’s problem of the 19 instances available in TSPLIB95, the African buffalo optimization proved to be the best algorithm in terms of efficiency and effectiveness in solving the problems under investigation.

[1]  Qidi Wu,et al.  A fast two-stage ACO algorithm for robotic path planning , 2011, Neural Computing and Applications.

[2]  Nickolas Savarimuthu,et al.  Metaheuristic algorithms and probabilistic behaviour: a comprehensive analysis of Ant Colony Optimization and its variants , 2015, Artificial Intelligence Review.

[3]  Evangelos Markakis,et al.  Auction-Based Multi-Robot Routing , 2005, Robotics: Science and Systems.

[4]  Nils J. Nilsson,et al.  Principles of Artificial Intelligence , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Sonia Chernova,et al.  Guest Editorial Special Issue on Robotics Education , 2013, IEEE Transactions on Education.

[6]  Khalid M. Salama,et al.  Instance Selection with Ant Colony Optimization , 2015, INNS Conference on Big Data.

[7]  Jean-François Petiot,et al.  Contribution to the scheduling of trajectories in robotics , 1998 .

[8]  Ana Paiva,et al.  Revive!: reactions to migration between different embodiments when playing with robotic pets , 2012, IDC '12.

[9]  Jayant G. Joshi Some Important Aspects to Enhance the Quality of the Technical Education System for Better Industry-Institute Interaction , 2013 .

[10]  Marc Carreras,et al.  A survey on coverage path planning for robotics , 2013, Robotics Auton. Syst..

[11]  Xueliang Fu,et al.  An Ant System-Assisted Genetic Algorithm For Solving The Traveling Salesman Problem , 2012 .

[12]  Raúl Rojas,et al.  A Multi-agent Platform for Biomimetic Fish , 2012, Living Machines.

[13]  Sam Kwong,et al.  Genetic Algorithms : Concepts and Designs , 1998 .

[14]  Julius Beneoluchi Odili,et al.  African Buffalo Optimization: A Swarm-Intelligence Technique , 2015 .

[15]  Anupam Agrawal,et al.  Vision based hand gesture recognition for human computer interaction: a survey , 2012, Artificial Intelligence Review.

[16]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms in Engineering Applications , 1997, Springer Berlin Heidelberg.

[17]  Xin-She Yang,et al.  Municipal waste management optimisation using a firefly algorithm-driven simulation-optimisation approach , 2014 .

[18]  Li Xian-lib Discrete particle swarm optimization for TSP based on neighborhood , 2011 .

[19]  Ning Chen,et al.  Financial credit risk assessment: a recent review , 2015, Artificial Intelligence Review.

[20]  Kai Zhao,et al.  Solving the traveling salesman problem based on an adaptive simulated annealing algorithm with greedy search , 2011, Appl. Soft Comput..

[21]  Yogita Gigras,et al.  Robotic Path Planning using Genetic Algorithm in Dynamic Environment , 2014 .

[22]  Julius Beneoluchi Odili,et al.  Numerical Function Optimization Solutions Using the AfricanBuffalo Optimization Algorithm (ABO) , 2015 .

[23]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[24]  Gerhard Reinelt,et al.  TSPLIB - A Traveling Salesman Problem Library , 1991, INFORMS J. Comput..

[25]  Xin-She Yang,et al.  An improved discrete bat algorithm for symmetric and asymmetric Traveling Salesman Problems , 2016, Eng. Appl. Artif. Intell..

[26]  Tai-hoon Kim,et al.  Application of Genetic Algorithm in Software Testing , 2009 .

[27]  Amir Hossein Gandomi,et al.  Bat algorithm for constrained optimization tasks , 2012, Neural Computing and Applications.

[28]  Adel M. Alimi,et al.  A New Ant Supervised-PSO Variant Applied to Traveling Salesman Problem , 2016, HIS.

[29]  Kenneth Sörensen,et al.  Metaheuristics - the metaphor exposed , 2015, Int. Trans. Oper. Res..

[30]  Haruna Matsushita Firefly algorithm with dynamically changing connections , 2015, 2015 IEEE Congress on Evolutionary Computation (CEC).

[31]  Julius Beneoluchi Odili Application of Ant Colony Optimization to Solving the Traveling Salesman's Problem , 2013 .

[32]  Julius Beneoluchi Odili,et al.  Large-Scale Kinetic Parameter Identification of Metabolic Network Model of E. coli Using PSO , 2015 .

[33]  Julius Beneoluchi Odili,et al.  AFRICAN BUFFALO OPTIMIZATION , 2016 .

[34]  Marco Dorigo,et al.  AntNet: Distributed Stigmergetic Control for Communications Networks , 1998, J. Artif. Intell. Res..

[35]  Nitish V. Thakor,et al.  Demonstration of a Semi-Autonomous Hybrid Brain–Machine Interface Using Human Intracranial EEG, Eye Tracking, and Computer Vision to Control a Robotic Upper Limb Prosthetic , 2014, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[36]  Ricardo García-Ródenas,et al.  A Framework for Derivative Free Algorithm Hybridization , 2013, ICANNGA.

[37]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.

[38]  Fabiane Barreto Vavassori Benitti,et al.  Exploring the educational potential of robotics in schools: A systematic review , 2012, Comput. Educ..

[39]  I H Osman,et al.  Meta-Heuristics Theory and Applications , 2011 .

[40]  Julius Beneoluchi Odili,et al.  African Buffalo Optimization Approach to the Design of PIDController in Automatic Voltage Regulator System , 2016 .

[41]  Georgios Dounias,et al.  Honey bees mating optimization algorithm for the Euclidean traveling salesman problem , 2011, Inf. Sci..

[42]  Satvir Singh,et al.  The Firefly Optimization Algorithm: Convergence Analysis and Parameter Selection , 2013 .

[43]  Ying Xin,et al.  Application of ACO to Vehicle Routing Problems Using Three Strategies , 2015 .

[44]  Eligius M. T. Hendrix,et al.  On the Investigation of Stochastic Global Optimization Algorithms , 2005, J. Glob. Optim..