High-rectification near-field thermal diode using phase change periodic nanostructure

We theoretically demonstrate workings of a near-field thermal rectification device that uses a phase change material to achieve asymmetry in radiative heat transfer. We exploit the temperature dependent dielectric properties of VO2 due to metal-insulator transition near 341 K. Analogous to an electrical diode, heat transfer coefficient is high in one direction while it is considerably small when the polarity of temperature gradient is reversed. We show that thermal rectification can be greatly enhanced by using 1-D rectangular and triangular VO2 surface gratings. With the introduction of periodic grating, rectification ratio is dramatically enhanced in the near-field due to reduced tunneling of surface waves across the interfaces for negative polarity. Our calculations predict that for minimal temperature difference of 20 K, the rectification ratio as high as 16 can be obtained, and it is maximum in existing literature for comparable operating temperatures and separation.

[1]  Liping Wang,et al.  Radiation-based near-field thermal rectification with phase transition materials , 2013 .

[2]  Yu-Bin Chen,et al.  Radiative Properties of Patterned Wafers With Nanoscale Linewidth , 2007 .

[3]  F. Keilmann,et al.  Infrared spectroscopy and nano-imaging of the insulator-to-metal transition in vanadium dioxide , 2009, 0904.0294.

[4]  W. Kobayashi,et al.  An oxide thermal rectifier , 2009, 0910.1153.

[5]  Shanhui Fan,et al.  Thermal rectification through vacuum. , 2010, Physical review letters.

[6]  E. Palik,et al.  Aluminum Arsenide (AIAs) , 1997 .

[7]  Baowen Li,et al.  Negative differential thermal resistance and thermal transistor , 2006 .

[8]  Svend-Age Biehs,et al.  Phase-change radiative thermal diode , 2013, 1307.3154.

[9]  F. Keilmann,et al.  Inhomogeneous electronic state near the insulator-to-metal transition in the correlated oxide VO2 , 2009 .

[10]  Thermal radiative near field transport between vanadium dioxide and silicon oxide across the metal insulator transition , 2015, 1512.09050.

[11]  Zhuomin M. Zhang,et al.  Application Conditions of Effective Medium Theory in Near-Field Radiative Heat Transfer Between Multilayered Metamaterials , 2014 .

[12]  Baowen Li,et al.  Thermal logic gates: computation with phonons. , 2007, Physical review letters.

[13]  G. M. Morris,et al.  Antireflection structured surfaces for the infrared spectral region. , 1993, Applied optics.

[14]  M. Martínez-Pérez,et al.  Rectification of electronic heat current by a hybrid thermal diode. , 2014, Nature nanotechnology.

[15]  Baowen Li,et al.  Thermal memory: a storage of phononic information. , 2008, Physical review letters.

[16]  Lei Wang,et al.  Colloquium : Phononics: Manipulating heat flow with electronic analogs and beyond , 2012 .

[17]  Philippe Lalanne,et al.  On the effective medium theory of subwavelength periodic structures , 1996 .

[18]  Philippe Ben-Abdallah,et al.  Near-field thermal transistor. , 2013, Physical review letters.

[19]  Joël Chevrier,et al.  Fast nanoscale heat-flux modulation with phase-change materials , 2011 .

[20]  A. Fong,et al.  A photon thermal diode , 2014, Nature Communications.

[21]  E. Meyhofer,et al.  Near-field radiative thermal transport: From theory to experiment , 2015 .

[22]  S. Shen,et al.  Broadband near-field radiative thermal emitter/absorber based on hyperbolic metamaterials: Direct numerical simulation by the Wiener chaos expansion method , 2013 .

[23]  A. Narayanaswamy,et al.  Infrared selective emitters with thin films of polar materials , 2014 .

[24]  Y. Xuan,et al.  Thermal rectification based on thermochromic materials , 2013 .

[25]  Svend-Age Biehs,et al.  Contactless heat flux control with photonic devices , 2015, 1503.04983.

[26]  A. S. Barker,et al.  Infrared Optical Properties of Vanadium Dioxide Above and Below the Transition Temperature , 1966 .

[27]  Vacuum thermal switch made of phase transition materials considering thin film and substrate effects , 2014, 1410.1269.

[28]  Lei Wang,et al.  Phononics gets hot , 2008 .

[29]  A. W. Smith Optical storage in VO2 films , 1973 .

[30]  Yi Zheng,et al.  A Green's function formalism of energy and momentum transfer in fluctuational electrodynamics , 2013, 1302.0545.

[31]  Philippe Ben-Abdallah,et al.  Modulation of near-field heat transfer between two gratings , 2011, 1105.3745.

[32]  D. Sawaki,et al.  Thermal rectification in bulk materials with asymmetric shape , 2011, 1102.4182.

[33]  Shanhui Fan,et al.  Negative differential thermal conductance through vacuum , 2012 .

[34]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[35]  T K Gaylord,et al.  High-spatial-frequency binary and multilevel stairstep gratings: polarization-selective mirrors and broadband antireflection surfaces. , 1992, Applied optics.

[36]  M. Qiu,et al.  Near field thermal memory based on radiative phase bistability of VO2 , 2015 .

[37]  Baowen Li,et al.  Thermal diode: rectification of heat flux. , 2004, Physical review letters.

[38]  Junwei Su,et al.  Role of nanoparticles in wavelength selectivity of multilayered structures in the far-field and near-field regimes. , 2015, Optics express.

[39]  W. Kobayashi,et al.  Thermal Rectification in the Vicinity of a Structural Phase Transition , 2012 .