A quantum algorithm for simulating non-sparse Hamiltonians

We present a quantum algorithm for simulating the dynamics of Hamiltonians that are not necessarily sparse. Our algorithm is based on the assumption that the entries of the Hamiltonian are stored in a data structure that allows for the efficient preparation of states that encode the rows of the Hamiltonian. We use a linear combination of quantum walks to achieve a poly-logarithmic dependence on the precision. The time complexity measured in terms of circuit depth of our algorithm is $O(t\sqrt{N}\lVert H \rVert \text{polylog}(N, t\lVert H \rVert, 1/\epsilon))$, where $t$ is the evolution time, $N$ is the dimension of the system, and $\epsilon$ is the error in the final state, which we call precision. Our algorithm can directly be applied as a subroutine for unitary Hamiltonians and solving linear systems, achieving a $\widetilde{O}(\sqrt{N})$ dependence for both applications.

[1]  R. Cleve,et al.  Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.

[2]  Robin Kothari,et al.  Efficient algorithms in quantum query complexity , 2014 .

[3]  Matthew Day,et al.  Advances in quantum machine learning , 2015, 1512.02900.

[4]  I. Chuang,et al.  Hamiltonian Simulation by Uniform Spectral Amplification , 2017, 1707.05391.

[5]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[6]  R. Feynman Quantum mechanical computers , 1986 .

[7]  R. Feynman Simulating physics with computers , 1999 .

[8]  I. Chuang,et al.  Optimal Hamiltonian Simulation by Quantum Signal Processing. , 2016, Physical review letters.

[9]  Iordanis Kerenidis,et al.  Quantum Recommendation Systems , 2016, ITCS.

[10]  P. Wocjan,et al.  Efficient quantum circuits for arbitrary sparse unitaries , 2009, 0904.2211.

[11]  Seth Lloyd,et al.  Quantum random access memory. , 2007, Physical review letters.

[12]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[13]  Andrew M. Childs,et al.  Hamiltonian Simulation with Nearly Optimal Dependence on all Parameters , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[14]  Anmer Daskin Quantum Principal Component Analysis , 2015 .

[15]  Barry C. Sanders,et al.  Simulating quantum dynamics on a quantum computer , 2010, 1011.3489.

[16]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[17]  Stacey Jeffery,et al.  The power of block-encoded matrix powers: improved regression techniques via faster Hamiltonian simulation , 2018, ICALP.

[18]  Amnon Ta-Shma,et al.  Adiabatic quantum state generation and statistical zero knowledge , 2003, STOC '03.

[19]  Stephen M. Barnett,et al.  Quantum information , 2005, Acta Physica Polonica A.

[20]  Guang Hao Low,et al.  Hamiltonian simulation with nearly optimal dependence on spectral norm , 2018, STOC.

[21]  Andrew M. Childs,et al.  Quantum Algorithm for Systems of Linear Equations with Exponentially Improved Dependence on Precision , 2015, SIAM J. Comput..

[22]  I. Chuang,et al.  Hamiltonian Simulation by Qubitization , 2016, Quantum.

[23]  Andrew M. Childs,et al.  Exponential improvement in precision for simulating sparse Hamiltonians , 2013, Forum of Mathematics, Sigma.

[24]  Nathan Wiebe,et al.  Hamiltonian simulation using linear combinations of unitary operations , 2012, Quantum Inf. Comput..

[25]  Nathan Wiebe,et al.  Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics , 2018, STOC.

[26]  Leonardo Novo,et al.  Corrected quantum walk for optimal Hamiltonian simulation , 2016, Quantum Inf. Comput..

[27]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[28]  Andrew M. Childs,et al.  Black-box hamiltonian simulation and unitary implementation , 2009, Quantum Inf. Comput..

[29]  Srinivasan Arunachalam,et al.  On the robustness of bucket brigade quantum RAM , 2015, TQC.

[30]  L. Wossnig,et al.  Quantum Linear System Algorithm for Dense Matrices. , 2017, Physical review letters.

[31]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[32]  Simone Severini,et al.  Quantum machine learning: a classical perspective , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[33]  Simone Severini,et al.  Approximating Hamiltonian dynamics with the Nyström method , 2018, Quantum.

[34]  Andrew M. Childs,et al.  Limitations on the simulation of non-sparse Hamiltonians , 2009, Quantum Inf. Comput..

[35]  F. Verstraete,et al.  Quantum simulation of time-dependent Hamiltonians and the convenient illusion of Hilbert space. , 2011, Physical review letters.

[36]  Tongyang Li,et al.  Sampling-based sublinear low-rank matrix arithmetic framework for dequantizing Quantum machine learning , 2019, STOC.

[37]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[38]  M. Szegedy,et al.  Quantum Walk Based Search Algorithms , 2008, TAMC.

[39]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[40]  F. W. J. Olver,et al.  Error analysis of Miller’s recurrence algorithm , 1964 .

[41]  S. Aaronson Read the fine print , 2015, Nature Physics.

[42]  Andrew M. Childs On the Relationship Between Continuous- and Discrete-Time Quantum Walk , 2008, 0810.0312.