A Complex Approach to UXO Discrimination: Combining Advanced EMI Forward Models and Statistical Signal Processing

Abstract : The research described in this report was conducted in fulfillment of Project MM-1572, A Complex Approach to UXO Discrimination: Combining Advanced EMI Forward and Statistical Signal Processing, submitted to the Strategic Environmental Research and Development Program (SERDP) in response to the Munitions Management Statement of Need MMSON-07-04, Advanced Technologies for Detection, Discrimination, and Remediation of Munitions and Explosives of Concern (MEC): UXO Technology. The well-known and prohibitive cost of carefully excavating all geophysical anomalies detected at lands contaminated with unexploded ordnance (UXO) is one of the greatest impediments to performing an efficient and thorough cleanup of former battlefields and of Department of Defense (DoD) and Department of Energy (DOE) sites. Innovative discrimination techniques are required that can quickly and reliably distinguish between hazardous UXO and non-hazardous metallic items. The key to success lies in the development of advanced processing techniques that can analyze and process sophisticated magnetic or electromagnetic induction data, with its novel waveforms, ever improving quality, and vector or tensor character, so as to maximize the probability of correct classification and minimize the falsealarm rate.

[1]  Douglas Oldenburg,et al.  Selecting a Discrimination Algorithm for Unexploded Ordnance Remediation , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[2]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[3]  Irma Shamatava,et al.  A Simple Magnetic Charge Model for Classification of Multiple Buried Metallic Objects In Cases With Overlapping Signals , 2005 .

[4]  Andrea Massa,et al.  KERNELS EVALUATION OF SVM-BASED ESTIMATORS FOR INVERSE SCATTERING PROBLEMS , 2005 .

[5]  Katherine Kaye,et al.  ESTCP Pilot Program - Classification Approaches in Munitions Response , 2008 .

[6]  Leslie M. Collins,et al.  A comparison of the performance of statistical and fuzzy algorithms for unexploded ordnance detection , 2001, IEEE Trans. Fuzzy Syst..

[7]  Irma Shamatava,et al.  Analysis of EMI scattering to support UXO discrimination: heterogeneous and multiple objects , 2003, SPIE Defense + Commercial Sensing.

[8]  Cleve Moler,et al.  Mathematical Handbook for Scientists and Engineers , 1961 .

[9]  James R. McDonald,et al.  Using physics-based modeler outputs to train probabilistic neural networks for unexploded ordnance (UXO) classification in magnetometry surveys , 2001, IEEE Trans. Geosci. Remote. Sens..

[10]  Juan Pablo Fernández,et al.  Inferring the location of buried UXO using a support vector machine , 2007, SPIE Defense + Commercial Sensing.

[11]  Jin Au Kong,et al.  Support Vector Machine and Neural Network Classification of Metallic Objects Using Coefficients of the Spheroidal MQS Response Modes , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[12]  R. Zaridze,et al.  Wave field singularity aspects in large-size scatterers and inverse problems , 2002 .

[13]  P. Mahalanobis On the generalized distance in statistics , 1936 .

[14]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[15]  Kevin O'Neill,et al.  Use of standardized source sets for enhanced EMI classification of buried heterogeneous objects , 2004, SPIE Defense + Commercial Sensing.

[16]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[17]  D. Oldenburg,et al.  A Discrimination Algorithm for UXO Using Time Domain Electromagnetics , 2001 .

[18]  J. T. Smith,et al.  UXO detection and identification based on intrinsic target polarizabilities — A case history , 2009 .

[19]  Yijun Yu,et al.  A Bivariate Gaussian Model for Unexploded Ordnance Classification with EMI Data , 2007, IEEE Geoscience and Remote Sensing Letters.

[20]  Thomas H. Bell,et al.  Subsurface discrimination using electromagnetic induction sensors , 2001, IEEE Trans. Geosci. Remote. Sens..

[21]  James E. Gentle,et al.  Matrix Algebra: Theory, Computations, and Applications in Statistics , 2007 .

[22]  M. Aizerman,et al.  Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning , 1964 .

[23]  Lawrence Carin,et al.  Detection of buried targets via active selection of labeled data: application to sensing subsurface UXO , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Arogyaswami Paulraj,et al.  Joint angle and delay estimation using shift-invariance techniques , 1998, IEEE Trans. Signal Process..

[25]  E. Demidenko,et al.  Mixed Models: Theory and Applications (Wiley Series in Probability and Statistics) , 2004 .

[26]  Eric L. Miller,et al.  Statistical Classification of Buried Unexploded Ordnance Using Nonparametric Prior Models , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[27]  Bruce Barrow,et al.  Model-based characterization of electromagnetic induction signatures obtained with the MTADS electromagnetic array , 2001, IEEE Trans. Geosci. Remote. Sens..

[28]  Thomas H. Bell,et al.  Simple phenomenological models for wideband frequency-domain electromagnetic induction , 2001, IEEE Trans. Geosci. Remote. Sens..

[29]  Eric L. Miller,et al.  Statistical classification of buried objects from spatially sampled time or frequency domain electromagnetic induction data , 2004 .

[30]  J. T. Smith,et al.  Resolution depths for some transmitter-receiver configurations , 2002, IEEE Transactions on Geoscience and Remote Sensing.

[31]  Andrea Boni,et al.  An innovative real-time technique for buried object detection , 2003, IEEE Trans. Geosci. Remote. Sens..

[32]  M Berry Waves as catastrophes , 1976 .

[33]  David R. Musicant,et al.  Lagrangian Support Vector Machines , 2001, J. Mach. Learn. Res..

[34]  Motoaki Kawanabe,et al.  Kernel-Based Nonlinear Blind Source Separation , 2003, Neural Computation.

[35]  Lawrence Carin,et al.  Classification of Unexploded Ordnance Using Incomplete Multisensor Multiresolution Data , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[37]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[38]  Robert E. Grimm,et al.  Triaxial Modeling and Target Classification of Multichannel, Multicomponent EM Data for UXO Discrimination , 2003 .

[39]  Irma Shamatava,et al.  Fast data-derived fundamental spheroidal excitation models with application to UXO discrimination , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[40]  Leslie M. Collins,et al.  Sensing of unexploded ordnance with magnetometer and induction data: theory and signal processing , 2003, IEEE Trans. Geosci. Remote. Sens..

[41]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[42]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[43]  Irma Shamatava,et al.  Camp Beale Live-Site UXO Data Inversion and Classification Using Advanced EMI Models , 2011 .

[44]  Leonard R. Pasion,et al.  Application of the Normalized Surface Magnetic Source Model to a Blind Unexploded Ordnance Discrimination Test , 2010 .

[45]  Leslie M. Collins,et al.  Unexploded ordnance detection using Bayesian physics-based data fusion , 2003, Integr. Comput. Aided Eng..

[46]  Irma Shamatava,et al.  Fast and accurate calculation of physically complete EMI response by a heterogeneous metallic object , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[47]  R. Marshall 5. Multidimensional Scaling. 2nd edn. Trevor F. Cox and Michael A. A. Cox, Chapman & Hall/CRC, Boca Raton, London, New York, Washington DC, 2000. No. of pages: xiv + 309. Price: $79.95. ISBN 1‐58488‐094‐5 , 2002 .

[48]  Rainer Storn,et al.  System design by constraint adaptation and differential evolution , 1999, IEEE Trans. Evol. Comput..

[49]  Antoine Souloumiac,et al.  Jacobi Angles for Simultaneous Diagonalization , 1996, SIAM J. Matrix Anal. Appl..

[50]  Lawrence Carin,et al.  Detection of Unexploded Ordnance via Efficient Semisupervised and Active Learning , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[51]  Leonard R. Pasion,et al.  Computing Transient Electromagnetic Responses of a Metallic Object Using a Spheroidal Excitation Approach , 2008, IEEE Geoscience and Remote Sensing Letters.

[52]  Aleksandr Gavrilovich Kyurkchan,et al.  Singularities of continuation of wave fields , 1996 .

[53]  Chih-Jen Lin,et al.  A comparison of methods for multiclass support vector machines , 2002, IEEE Trans. Neural Networks.

[54]  J. P. Fernández,et al.  Application of the normalized surface magnetic charge model to UXO discrimination in cases with overlapping signals , 2007 .

[55]  Xudong Chen Inverse problems in electromagnetics , 2005 .

[56]  Irma Shamatava,et al.  A New Physics-based Approach for Estimating a Buried Object’s Location, Orientation and Magnetic Polarization from EMI Data , 2008 .

[57]  Carl E. Baum,et al.  On the low-frequency natural response of conducting and permeable targets , 1999, IEEE Trans. Geosci. Remote. Sens..

[58]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[59]  Eric Moulines,et al.  A blind source separation technique using second-order statistics , 1997, IEEE Trans. Signal Process..

[60]  F. Shubitidze,et al.  Simple magnetic charge model for representation of emi responses from a buried UXO , 2004, Proceedings of the 9th International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory, 2004. DIPED 2004..

[61]  Andrea Boni,et al.  A classification approach based on SVM for electromagnetic subsurface sensing , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[62]  W. Gautschi,et al.  An algorithm for simultaneous orthogonal transformation of several positive definite symmetric matrices to nearly diagonal form , 1986 .

[63]  James Byrnes,et al.  Unexploded Ordnance Detection and Mitigation , 2008 .

[64]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[65]  Alex Becker,et al.  Berkeley Uxo Discriminator (Bud) , 2007 .

[66]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[67]  Juan Pablo Fernández,et al.  Evaluation of SVM classification of metallic objects based on a magnetic-dipole representation , 2006, SPIE Defense + Commercial Sensing.

[68]  Jin Au Kong,et al.  Broadband analytical magnetoquasistatic electromagnetic induction solution for a conducting and permeable spheroid , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[69]  Stephen D. Billings,et al.  Discrimination and classification of buried unexploded ordnance using magnetometry , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[70]  J. Mercer Functions of positive and negative type, and their connection with the theory of integral equations , 1909 .

[71]  Jiahua Chen,et al.  Inference for multivariate normal mixtures , 2008, J. Multivar. Anal..

[72]  Kevin O'Neill,et al.  Combined differential evolution and surface magnetic charge model algorithm for discrimination of UXO from non-UXO items: simple and general inversions , 2005, SPIE Defense + Commercial Sensing.

[73]  J. T. Smith,et al.  Optimizing receiver configurations for resolution of equivalent dipole polarizabilities in situ , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[74]  Irma Shamatava,et al.  Camp Butner UXO Data Inversion and Classification Using Advanced EMI Models , 2010 .

[75]  Anja Vogler,et al.  An Introduction to Multivariate Statistical Analysis , 2004 .

[76]  Leslie M. Collins,et al.  EMI-based classification of multiple closely spaced subsurface objects via independent component analysis , 2004, IEEE Transactions on Geoscience and Remote Sensing.