A Brief Overview of Atom Probe Tomography Research

Atom probe tomography (APT) stems from the field-ion microscope (Müller, 1956) equipped with a time-of-flight mass spectrometer developed by Erwin Müller and his coworkers in 1967 to 1968 (Müller et al., 1968). The technique is henceforth about to celebrate its 50th anniversary. Field ion microscopy makes use of an intense electric field, in the rage of 10 Vm, to ionize rare gas atoms in the vicinity of the specimen surface. The specimen is shaped as a sharp needle, with a radius of curvature R in the range of 30 to 200 nm, which enables the generation of electric fields of the appropriate magnitude by biasing the specimen to a few kilovolts (the field is proportional to V/R). The specimen is maintained at low temperature (20~80 K) to prevent surface migration and improve the control over the field evaporation process, and the analysis takes place in ultra-high vacuum conditions (≈10 Pa), prior to the introduction of the imaging gas (≈10 Pa). The beams of ions generated near the surface are projected, under the effect of the very intense electric field, onto a screen and the image formed reveals the topography of the specimen surface down to the atomic-level (Müller & Bahadur, 1956), allowing to image lattice defects (Beavan et al., 1971; Dagan et al., 2015; Wilde et al., 2000) as well as secondary phases (Faulkner & Ralph, 1972). In atom probe experiments, no imaging gas is used, and it is the atoms from the specimen itself that are successively removed in the form of ions. The prevalent theory of field evaporation from metal surfaces involves atoms escaping while their charge is progressively drained back into the surface (Forbes, 1995), and as the singly-charged ion is accelerated away from the surface, it can undergo one or more successive electricfield-induced ionization (Kingham, 1982). In order to achieve time-control of the field evaporation process, high-voltage (Müller et al., 1968) or laser pulses (Bunton et al., 2007; Gault et al., 2006; Kellogg & Tsong, 1980) are superimposed to a direct current high voltage (VDC) field, as depicted in Fig. 1, to trigger the departure of the ions. This, in turns, allows for elemental identification of each evaporated ion by timeof-flight mass spectrometry. The emission of the ions takes place during the pulse, and in the case of the voltage-pulsed instrument, and although the pulse is in the nanosecond time range, ions are emitted with a range of energies, that cause a spread of the times-of-flight for ions of a single element, which limit the mass resolving power of the technique.

[1]  S. Reddy,et al.  Nanogeochronology of discordant zircon measured by atom probe microscopy of Pb-enriched dislocation loops , 2016, Science Advances.

[2]  J. Cairney,et al.  Atomic-scale compositional mapping reveals Mg-rich amorphous calcium phosphate in human dental enamel , 2016, Science Advances.

[3]  B. Deconihout,et al.  Dissociation Dynamics of Molecular Ions in High dc Electric Field. , 2016, The journal of physical chemistry. A.

[4]  Christopher H. Hendon,et al.  The effect of bean origin and temperature on grinding roasted coffee , 2016, Scientific Reports.

[5]  H. Kreuzer,et al.  The Mystery of Missing Species in Atom Probe Tomography of Composite Materials , 2015, Microscopy and Microanalysis.

[6]  Baptiste Gault,et al.  Restoring the lattice of Si-based atom probe reconstructions for enhanced information on dopant positioning. , 2015, Ultramicroscopy.

[7]  D. Larson,et al.  An analytical model accounting for tip shape evolution during atom probe analysis of heterogeneous materials. , 2015, Ultramicroscopy.

[8]  Baptiste Gault,et al.  Imaging of radiation damage using complementary field ion microscopy and atom probe tomography. , 2015, Ultramicroscopy.

[9]  S. Sinnott,et al.  Behavior of molecules and molecular ions near a field emitter , 2015, 1511.09029.

[10]  S. Sandlöbes,et al.  Linear complexions: Confined chemical and structural states at dislocations , 2015, Science.

[11]  M. Moody,et al.  Atom probe tomography of stress corrosion crack tips in SUS316 stainless steels , 2015 .

[12]  K. Yi,et al.  The role of grain boundaries in the initial oxidation behavior of austenitic stainless steel containing alloyed Cu at 700 °C for advanced thermal power plant applications , 2015 .

[13]  Baptiste Gault,et al.  A new systematic framework for crystallographic analysis of atom probe data. , 2015, Ultramicroscopy.

[14]  M. Herbig,et al.  Combining structural and chemical information at the nanometer scale by correlative transmission electron microscopy and atom probe tomography. , 2015, Ultramicroscopy.

[15]  S. Ringer,et al.  Atom probe study of chromium oxide spinels formed during intergranular corrosion , 2015 .

[16]  Baptiste Gault,et al.  Atomically resolved tomography to directly inform simulations for structure–property relationships , 2014, Nature Communications.

[17]  D. Seidman,et al.  Comparison between dislocation dynamics model predictions and experiments in precipitation-strengthened Al–Li–Sc alloys , 2014 .

[18]  H. Kreuzer,et al.  Do dielectric nanostructures turn metallic in high-electric dc fields? , 2014, Nano letters.

[19]  C. C. Wong,et al.  Resolving the Morphology of Niobium Carbonitride Nano-Precipitates in Steel Using Atom Probe Tomography , 2014, Microscopy and Microanalysis.

[20]  M. Thuvander,et al.  Atomically resolved tissue integration. , 2014, Nano letters.

[21]  T. Dorin,et al.  Complementarity of Atom Probe, Small Angle Scattering and Differential Scanning Calorimetry for the Study of Precipitation in Aluminium Alloys , 2014 .

[22]  W. Vandervorst,et al.  Laser pulsing of field evaporation in atom probe tomography , 2014 .

[23]  Simon A. Wilde,et al.  Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography , 2014 .

[24]  M. Herbig,et al.  Multi-Scale Correlative Microscopy Investigation of Both Structure and Chemistry of Deformation Twin Bundles in Fe–Mn–C Steel , 2013, Microscopy and Microanalysis.

[25]  E. Marquis,et al.  On the current role of atom probe tomography in materials characterization and materials science , 2013 .

[26]  H. Kreuzer,et al.  Atom Probe Tomography and field evaporation of insulators and semiconductors: Theoretical issues , 2013 .

[27]  Baptiste Gault,et al.  Atom probe tomography spatial reconstruction: Status and directions , 2013, 1510.02843.

[28]  A. Hideur,et al.  Coupling atom probe tomography and photoluminescence spectroscopy: exploratory results and perspectives. , 2013, Ultramicroscopy.

[29]  Baptiste Gault,et al.  Reconstructing atom probe data: a review. , 2013, Ultramicroscopy.

[30]  S. Suram,et al.  Calibration of reconstruction parameters in atom probe tomography using a single crystallographic orientation. , 2013, Ultramicroscopy.

[31]  B. Gault,et al.  Atom Probe Characterization of Corroded Alloy 600 , 2013, Microscopy and Microanalysis.

[32]  T. G. Woodcock,et al.  High-coercivity Nd–Fe–B thick films without heavy rare earth additions , 2013 .

[33]  D. Saxey,et al.  Examinations of Oxidation and Sulfidation of Grain Boundaries in Alloy 600 Exposed to Simulated Pressurized Water Reactor Primary Water , 2013, Microscopy and Microanalysis.

[34]  S. Ringer,et al.  Nearest neighbour diagnostic statistics on the accuracy of APT solute cluster characterisation , 2013 .

[35]  A. Deschamps,et al.  Atom probe microscopy investigation of Mg site occupancy within delta ' precipitates in an Al-Mg-Li alloy. , 2012, 1510.02910.

[36]  Talukder Alam,et al.  A reproducible method for damage‐free site‐specific preparation of atom probe tips from interfaces , 2012, Microscopy research and technique.

[37]  B. Gault,et al.  Accuracy of pulsed laser atom probe tomography for compound semiconductor analysis , 2011 .

[38]  J. D. Olson,et al.  Toward atom probe tomography of microelectronic devices , 2011 .

[39]  S. Ringer,et al.  Influence of the wavelength on the spatial resolution of pulsed-laser atom probe , 2011 .

[40]  S. Ringer,et al.  Segregation of solute elements at grain boundaries in an ultrafine grained Al-Zn-Mg-Cu alloy. , 2011, Ultramicroscopy.

[41]  G. D. Smith,et al.  Some aspects of the field evaporation behaviour of GaSb. , 2011, Ultramicroscopy.

[42]  B. Mazumder,et al.  Evaporation mechanisms of MgO in laser assisted atom probe tomography. , 2011, Ultramicroscopy.

[43]  T. Ohkubo,et al.  Laser assisted field evaporation of oxides in atom probe analysis. , 2011, Ultramicroscopy.

[44]  T. Ohkubo,et al.  Broadening the applications of the atom probe technique by ultraviolet femtosecond laser. , 2011, Ultramicroscopy.

[45]  S. Ringer,et al.  Quantitative atom probe analysis of nanostructure containing clusters and precipitates with multiple length scales. , 2011, Ultramicroscopy.

[46]  B Gault,et al.  Advances in the reconstruction of atom probe tomography data. , 2011, Ultramicroscopy.

[47]  Daniel Haley,et al.  Crystallographic structural analysis in atom probe microscopy via 3D Hough transformation. , 2011, Ultramicroscopy.

[48]  Baptiste Gault,et al.  Lattice Rectification in Atom Probe Tomography: Toward True Three-Dimensional Atomic Microscopy , 2011, Microscopy and Microanalysis.

[49]  Derk Joester,et al.  Nanoscale chemical tomography of buried organic–inorganic interfaces in the chiton tooth , 2011, Nature.

[50]  T. Prosa,et al.  From the Store Shelf to Device-Level Atom Probe Analysis: An Exercise in Feasibility , 2011 .

[51]  Baptiste Gault,et al.  Influence of surface migration on the spatial resolution of pulsed laser atom probe tomography , 2010 .

[52]  Baptiste Gault,et al.  Impact of laser pulsing on the reconstruction in an atom probe tomography. , 2010, Ultramicroscopy.

[53]  Emmanuelle A. Marquis,et al.  Applications of atom-probe tomography to the characterisation of solute behaviours , 2010 .

[54]  Baptiste Gault,et al.  Spatial Resolution in Atom Probe Tomography , 2010, Microscopy and Microanalysis.

[55]  Emmanuelle A. Marquis,et al.  Nuclear reactor materials at the atomic scale , 2009 .

[56]  D. Larson,et al.  Atom-Probe Tomographic Studies of Thin Films and Multilayers , 2009 .

[57]  François Vurpillot,et al.  Depth resolution function of the laser assisted tomographic atom probe in the investigation of semiconductors , 2009 .

[58]  Baptiste Gault,et al.  Origin of the spatial resolution in atom probe microscopy , 2009 .

[59]  Edgar Voelkl,et al.  Practical Determination of Spatial Resolution in Atom Probe Tomography , 2009, Microscopy and Microanalysis.

[60]  B. Deconihout,et al.  Thermal response of a field emitter subjected to ultra-fast laser illumination , 2009 .

[61]  Baptiste Gault,et al.  Qualification of the tomographic reconstruction in atom probe by advanced spatial distribution map techniques. , 2009, Ultramicroscopy.

[62]  Geoffrey W. Barton,et al.  Influence of field evaporation on Radial Distribution Functions in Atom Probe Tomography , 2009 .

[63]  Baptiste Gault,et al.  Advances in the calibration of atom probe tomographic reconstruction , 2009 .

[64]  G. Smith,et al.  Structural Materials: Understanding Atomic-Scale Microstructures , 2009 .

[65]  D. Larson,et al.  Performance Advantages of a Modern, Ultra-High Mass Resolution Atom Probe , 2008, Microscopy and Microanalysis.

[66]  A. Ceguerra,et al.  Quantitative binomial distribution analyses of nanoscale like‐solute atom clustering and segregation in atom probe tomography data , 2008, Microscopy research and technique.

[67]  Alfred Cerezo,et al.  Atom probe tomography today , 2007 .

[68]  J. D. Olson,et al.  Advances in Pulsed-Laser Atom Probe: Instrument and Specimen Design for Optimum Performance , 2007, Microscopy and Microanalysis.

[69]  Michael P Moody,et al.  New Techniques for the Analysis of Fine-Scaled Clustering Phenomena within Atom Probe Tomography (APT) Data , 2007, Microscopy and Microanalysis.

[70]  H. Bernas,et al.  Some aspects of the silicon behaviour under femtosecond pulsed laser field evaporation. , 2007, Ultramicroscopy.

[71]  B. Gault,et al.  Optical and thermal processes involved in ultrafast laser pulse interaction with a field emitter. , 2007, Ultramicroscopy.

[72]  G. D. Smith,et al.  Aspects of the performance of a femtosecond laser-pulsed 3-dimensional atom probe. , 2007, Ultramicroscopy.

[73]  L. Marrucci,et al.  Femtosecond field ion emission by surface optical rectification. , 2007, Physical review letters.

[74]  Brian P. Gorman,et al.  Atom Probe Tomography of Electronic Materials , 2007 .

[75]  David N. Seidman,et al.  Three-Dimensional Atom-Probe Tomography: Advances and Applications , 2007 .

[76]  S. Ringer,et al.  Contingency table techniques for three dimensional atom probe tomography , 2007, Microscopy research and technique.

[77]  D. Seidman,et al.  The mechanism of morphogenesis in a phase-separating concentrated multicomponent alloy. , 2007, Nature materials.

[78]  M. Brunel,et al.  Toward a laser assisted wide‐angle tomographic atom‐probe , 2007 .

[79]  D Lawrence,et al.  In situ site-specific specimen preparation for atom probe tomography. , 2007, Ultramicroscopy.

[80]  J. D. Olson,et al.  Instrumentation Developments in Atom Probe Tomography: Applications in Semiconductor Research , 2006, Microscopy and Microanalysis.

[81]  R. Kirchheim,et al.  Exploring the Next Neighbourhood Relationship in Metallic Glasses utilizing the Atom Probe Tomography , 2006, 2006 19th International Vacuum Nanoelectronics Conference.

[82]  K. F. Russell,et al.  Atom Probe Specimen Preparation with a Dual Beam FIB Miller , 2006, 2006 19th International Vacuum Nanoelectronics Conference.

[83]  J. Schneir,et al.  Spatial Distribution Maps for Atom Probe Tomography , 2006, 2006 19th International Vacuum Nanoelectronics Conference.

[84]  Zhi-guo Liu,et al.  Investigation of the Site Occupation of Atoms in Pure and Doped TiA1/Ti3Al Intermetallic , 2006, 2006 19th International Vacuum Nanoelectronics Conference.

[85]  B. Gault,et al.  Evidence of field evaporation assisted by nonlinear optical rectification induced by ultrafast laser , 2006 .

[86]  B. Gault,et al.  Design of a femtosecond laser assisted tomographic atom probe , 2006 .

[87]  D. Blavette,et al.  3D atom probe study of solute atoms clustering during natural ageing and pre-ageing of an Al-Mg-Si alloy , 2006 .

[88]  Baptiste Gault,et al.  Estimation of the tip field enhancement on a field emitter under laser illumination , 2005 .

[89]  E. Müller,et al.  The atom-probe field ion microscope , 1970, Naturwissenschaften.

[90]  B. Deconihout,et al.  Design of a delay-line position-sensitive detector with improved performance , 2005 .

[91]  F Vurpillot,et al.  Application of Fourier transform and autocorrelation to cluster identification in the three‐dimensional atom probe , 2004, Journal of microscopy.

[92]  J. D. Olson,et al.  First Data from a Commercial Local Electrode Atom Probe (LEAP) , 2004, Microscopy and Microanalysis.

[93]  K. Hono,et al.  Effects of incidence angles of ions on the mass resolution of an energy compensated 3D atom probe. , 2003, Ultramicroscopy.

[94]  Ottmar Jagutzki,et al.  Multiple hit read-out of a microchannel plate detector with a three-layer delay-line anode , 2001, 2001 IEEE Nuclear Science Symposium Conference Record (Cat. No.01CH37310).

[95]  F Vurpillot,et al.  Structural analyses in three‐dimensional atom probe: a Fourier transform approach , 2001, Journal of microscopy.

[96]  D. Seidman,et al.  New method for the calibration of three-dimensional atom-probe mass spectra , 2001 .

[97]  E. Campbell,et al.  Coulomb explosion in ultrashort pulsed laser ablation of Al 2 O 3 , 2000 .

[98]  Dieter Isheim,et al.  Analysis of Three-dimensional Atom-probe Data by the Proximity Histogram , 2000, Microscopy and Microanalysis.

[99]  G. Smith,et al.  Three-dimensional atomic-scale mapping of a cottrell atmosphere around a dislocation in iron , 2000 .

[100]  M. K. Miller,et al.  The development of atom probe field-ion microscopy , 2000 .

[101]  T. C. Anthony,et al.  Focused ion-beam milling for field-ion specimen preparation:: preliminary investigations , 1998 .

[102]  K. Yamanaka,et al.  Development of the Scanning Atom Probe and Atomic Level Analysis , 1998, Microscopy and Microanalysis.

[103]  Alfred Cerezo,et al.  Performance of an energy-compensated three-dimensional atom probe , 1998 .

[104]  R. Forbes Field evaporation theory: a review of basic ideas , 1995 .

[105]  A. Bostel,et al.  A general protocol for the reconstruction of 3D atom probe data , 1995 .

[106]  D. Blavette,et al.  An atom probe for three-dimensional tomography , 1993, Nature.

[107]  A. Melmed The art and science and other aspects of making sharp tips , 1991 .

[108]  Alfred Cerezo,et al.  Application of a position-sensitive detector to atom probe microanalysis , 1988 .

[109]  G. Smith,et al.  In situ ion milling of field ion specimens using a liquid metal ion source , 1984 .

[110]  T. Tsong,et al.  Energy distributions of pulsed-laser field-desorbed gaseous ions and field-evaporated metal ions: A direct time-of-flight measurement , 1984 .

[111]  T. Tsong,et al.  Pulsed‐laser time‐of‐flight atom‐probe field ion microscope , 1982 .

[112]  G. Kellogg Measurement of the charge state distribution of field evaporated ions: Evidence for post-ionization☆ , 1982 .

[113]  D. Kingham The post-ionization of field evaporated ions: A theoretical explanation of multiple charge states , 1982 .

[114]  G. Kellogg Determining the field emitter temperature during laser irradiation in the pulsed laser atom probe , 1981 .

[115]  Y. Kuk,et al.  Feasibility of ToF atom-probe analysis of silicon , 1981 .

[116]  G. Kellogg,et al.  Pulsed-laser atom-probe field-ion microscopy , 1980 .

[117]  T. Kuroda,et al.  Atom-probe fim studies of β-SiC whiskers , 1978 .

[118]  J. Walls,et al.  The preparation of field electron/field-ion emitters by ion etching , 1974 .

[119]  R. Faulkner,et al.  Field-ion microscopy of the early stages of γ' precipitation in a nickel-aluminium alloy , 1972 .

[120]  David N. Seidman,et al.  The defect structure of depleted zones in irradiated tungsten , 1971 .

[121]  S. R. Goodman,et al.  FIM-atom probe analysis of thin nitride platelets in Fe-3 at.% Mo , 1971 .

[122]  E. Müller,et al.  FIELD IONIZATION OF GASES AT A METAL SURFACE AND THE RESOLUTION OF THE FIELD ION MICROSCOPE , 1956 .

[123]  E. Müller,et al.  Resolution of the Atomic Structure of a Metal Surface by the Field Ion Microscope , 1956 .