On the Stabilization of Linear Systems Under Assigned I/O Quantization

This paper is concerned with the stabilization of discrete-time linear systems with quantization of the input and output spaces, i.e., when available values of inputs and outputs are discrete. Unlike most of the existing literature, we assume that how the input and output spaces are quantized is a datum of the problem, rather than a degree of freedom in design. Our focus is hence on the existence and synthesis of symbolic feedback controllers, mapping output words into the input alphabet, to steer a quantized I/O system to within small invariant neighborhoods of the equilibrium starting from large attraction basins. We provide a detailed analysis of the practical stabilizability of systems in terms of the size of hypercubes bounding the initial conditions, the state transient, and the steady-state evolution. We also provide an explicit construction of a practically stabilizing controller for the quantized I/O case.

[1]  D. Delchamps Stabilizing a linear system with quantized state feedback , 1990 .

[2]  Bernard Friedland,et al.  On adaptive friction compensation , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[3]  M. Polycarpou,et al.  On the existence and uniqueness of solutions in adaptive control systems , 1993, IEEE Trans. Autom. Control..

[4]  D. J. Brookfield,et al.  Sequential identification of coulomb and viscous friction in robot drives , 1997, Autom..

[5]  S. Sankaranarayanan,et al.  Friction compensation via variable structure control: regulation and low-velocity tracking , 1997, Proceedings of the 1997 IEEE International Conference on Control Applications.

[6]  S. Sankaranarayanan,et al.  Friction compensation for drives with and without transmission compliance , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[7]  Franco Blanchini,et al.  Set invariance in control , 1999, Autom..

[8]  Darren M. Dawson,et al.  Tracking control of mechanical systems in the presence of nonlinear dynamic friction effects , 1999, IEEE Trans. Control. Syst. Technol..

[9]  A. G. de Jager,et al.  Grey-box modeling of friction: An experimental case-study , 1999 .

[10]  Wing Shing Wong,et al.  Systems with finite communication bandwidth constraints. II. Stabilization with limited information feedback , 1999, IEEE Trans. Autom. Control..

[11]  Warren E. Dixon,et al.  Tracking control in the presence of nonlinear dynamic frictional effects: robot extension , 1999, Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328).

[12]  Ronald M. Hirschorn,et al.  Control of nonlinear systems with friction , 1999, IEEE Trans. Control. Syst. Technol..

[13]  Jan Swevers,et al.  An integrated friction model structure with improved presliding behavior for accurate friction compensation , 1998, IEEE Trans. Autom. Control..

[14]  In-Joong Ha,et al.  A learning approach to tracking in mechanical systems with friction , 2000, IEEE Trans. Autom. Control..

[15]  Teh-Lu Liao,et al.  An exponentially stable adaptive friction compensator , 2000, IEEE Trans. Autom. Control..

[16]  Daniel Liberzon,et al.  Quantized feedback stabilization of linear systems , 2000, IEEE Trans. Autom. Control..

[17]  Nicola Elia,et al.  Stabilization of linear systems with limited information , 2001, IEEE Trans. Autom. Control..

[18]  T. Zhang,et al.  Comments on "An exponentially stable adaptive friction compensator" , 2001, IEEE Trans. Autom. Control..

[19]  Seung-Jean Kim,et al.  A frequency-domain approach to identification of mechanical systems with friction , 2001, IEEE Trans. Autom. Control..

[20]  John Baillieul,et al.  Feedback Designs in Information-Based Control , 2002 .

[21]  Darren M. Dawson,et al.  QMotor 3.0 and the QMotor robotic toolkit: a PC-based control platform , 2002 .

[22]  Jan Swevers,et al.  Modification of the Leuven integrated friction model structure , 2002, IEEE Trans. Autom. Control..

[23]  Daniel Liberzon,et al.  Hybrid feedback stabilization of systems with quantized signals , 2003, Autom..

[24]  Sandro Zampieri,et al.  Quantized stabilization of linear systems: complexity versus performance , 2004, IEEE Transactions on Automatic Control.

[25]  Robin J. Evans,et al.  Stabilizability of Stochastic Linear Systems with Finite Feedback Data Rates , 2004, SIAM J. Control. Optim..

[26]  Sekhar Tatikonda,et al.  Control under communication constraints , 2004, IEEE Transactions on Automatic Control.

[27]  G. Goodwin,et al.  Finite constraint set receding horizon quadratic control , 2004 .

[28]  Jian Chen,et al.  A continuous asymptotic tracking control strategy for uncertain nonlinear systems , 2004, IEEE Transactions on Automatic Control.

[29]  Seung-Jean Kim,et al.  An efficient identification method for friction in single-DOF motion control systems , 2004, IEEE Trans. Control. Syst. Technol..

[30]  W.E. Dixon,et al.  A new continuously differentiable friction model for control systems design , 2005, Proceedings, 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics..

[31]  Qiang Ling,et al.  Stability of quantized control systems under dynamic bit assignment , 2005, IEEE Transactions on Automatic Control.

[32]  Lihua Xie,et al.  The sector bound approach to quantized feedback control , 2005, IEEE Transactions on Automatic Control.

[33]  Guoqiang Hu,et al.  Lyapunov-Based Tracking Control in the Presence of Uncertain Nonlinear Parameterizable Friction , 2007, IEEE Transactions on Automatic Control.

[34]  A. Bicchi,et al.  Hypercubes are minimal controlled invariants for discrete-time linear systems with quantized scalar input , 2008 .