Exponential fitted Gauss, Radau and Lobatto methods of low order

Several exponential fitting Runge-Kutta methods of collocation type are derived as a generalization of the Gauss, Radau and Lobatto traditional methods of two steps. The new methods are capable of the exact integration (with only round-off errors) of differential equations whose solutions are linear combinations of an exponential and ordinary polynomials. Theorems of the truncation error reveal the good behavior of the new methods for stiff problems. Plots of their absolute stability regions that include the whole of the negative real axis are provided. A different procedure to find the parameter of the method is proposed. The variable step Radau method of two stages is derived. Finally, numerical examples underscore the efficiency of the proposed codes, especially when they are integrating stiff problems.

[1]  Roger B. Sidje,et al.  Expokit: a software package for computing matrix exponentials , 1998, TOMS.

[2]  H. De Meyer,et al.  Exponentially fitted variable two-step BDF algorithm for first order ODEs☆ , 2003 .

[3]  R. Scherer A necessary condition forB-stability , 1979 .

[4]  Richard C Aiken,et al.  Stiff computation , 1985 .

[5]  Mohammad Taghi Darvishi,et al.  Spectral collocation solution of a generalized Hirota–Satsuma coupled KdV equation , 2007 .

[6]  H. De Meyer,et al.  Frequency evaluation in exponential fitting multistep algorithms for ODEs , 2002 .

[7]  J. Martín-Vaquero,et al.  Exponential fitting BDF-Runge-Kutta algorithms , 2008, Comput. Phys. Commun..

[8]  Michael T. Heath,et al.  Scientific Computing , 2018 .

[9]  R. Kosloff Propagation Methods for Quantum Molecular Dynamics , 1994 .

[10]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .

[11]  L. Tuckerman,et al.  A method for exponential propagation of large systems of stiff nonlinear differential equations , 1989 .

[12]  A. H. Khater,et al.  Numerical solutions of some nonlinear evolution equations by Chebyshev spectral collocation methods , 2007, Int. J. Comput. Math..

[13]  G. Vanden Berghe,et al.  Exponential fitted Runge--Kutta methods of collocation type: fixed or variable knot points? , 2003 .

[14]  Ernst Hairer,et al.  Rosenbrock-Type Methods , 1996 .

[15]  Hans Van de Vyver,et al.  Frequency evaluation for exponentially fitted Runge-Kutta methods , 2005 .

[16]  Jesús Vigo-Aguiar,et al.  Exponential fitting BDF algorithms: explicit and implicit 0-stable methods , 2006 .

[17]  A. Hindmarsh LSODE and LSODI, two new initial value ordinary differential equation solvers , 1980, SGNM.

[18]  Jesús Vigo-Aguiar,et al.  On the stability of exponential fitting BDF algorithms , 2005 .

[19]  M. N. Spijker Stiffness in numerical initial-value problems , 1996 .

[20]  Joseph Pedlosky,et al.  The Initial Value Problem , 2003 .

[21]  John C. Butcher,et al.  ARK methods for stiff problems , 2005 .

[22]  H. Stetter Analysis of Discretization Methods for Ordinary Differential Equations , 1973 .

[23]  C F Curtiss,et al.  Integration of Stiff Equations. , 1952, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Jesús Vigo-Aguiar,et al.  Adapted BDF Algorithms: Higher-order Methods and Their Stability , 2007, J. Sci. Comput..

[25]  W. S. Edwards,et al.  Krylov methods for the incompressible Navier-Stokes equations , 1994 .

[26]  H. Meyer,et al.  Four-step exponential-fitted methods for nonlinear physical problems , 1997 .

[27]  R. Alexander Diagonally implicit runge-kutta methods for stiff odes , 1977 .

[28]  Jeff Cash,et al.  The integration of stiff initial value problems in ODEs using modified extended backward differentiation formulae , 1983 .

[29]  Yousef Saad,et al.  Efficient Solution of Parabolic Equations by Krylov Approximation Methods , 1992, SIAM J. Sci. Comput..

[30]  L. Trefethen,et al.  Stiffness of ODEs , 1993 .

[31]  Theodore E. Simos,et al.  A Modified Runge-Kutta Method with Phase-lag of Order Infinity for the Numerical Solution of the Schrödinger Equation and Related Problems , 2001, Comput. Chem..

[32]  J. Lambert Numerical Methods for Ordinary Differential Systems: The Initial Value Problem , 1991 .

[33]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[34]  G. D. Byrne,et al.  VODE: a variable-coefficient ODE solver , 1989 .

[35]  Jesús Vigo-Aguiar,et al.  Exponential fitting BDF algorithms and their properties , 2007, Appl. Math. Comput..

[36]  L. Petzold A description of dassl: a differential/algebraic system solver , 1982 .

[37]  Jason Frank,et al.  Parallel iteration of the extended backward differentiation formulas , 1999 .

[38]  C. W. Gear,et al.  Algorithm 407 DIFSUB for Solution of Ordinary Differential Equations , 1971 .

[39]  T. E. Simos,et al.  Symmetric Eighth Algebraic Order Methods with Minimal Phase-Lag for the Numerical Solution of the Schrödinger Equation , 2002 .

[40]  Ralph A. Willoughby,et al.  EFFICIENT INTEGRATION METHODS FOR STIFF SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS , 1970 .

[41]  Christoph Fredebeul,et al.  A-BDF: A Generalization of the Backward Differentiation Formulae , 1998 .

[42]  H. De Meyer,et al.  Weights of the exponential fitting multistep algorithms for first-order ODEs , 2001 .

[43]  Liviu Gr. Ixaru,et al.  P-stability and exponential-fitting methods for y″″ = f(x, y) , 1996 .