Improved Fault-Tolerant Quantum Simulation of Condensed-Phase Correlated Electrons via Trotterization

Recent work has deployed linear combinations of unitaries techniques to reduce the cost of fault-tolerant quantum simulations of correlated electron models. Here, we show that one can sometimes improve upon those results with optimized implementations of Trotter-Suzuki-based product formulas. We show that low-order Trotter methods perform surprisingly well when used with phase estimation to compute relative precision quantities (e.g. energies per unit cell), as is often the goal for condensed-phase systems. In this context, simulations of the Hubbard and plane-wave electronic structure models with $N < 10^5$ fermionic modes can be performed with roughly $O(1)$ and $O(N^2)$ T complexities. We perform numerics revealing tradeoffs between the error and gate complexity of a Trotter step; e.g., we show that split-operator techniques have less Trotter error than popular alternatives. By compiling to surface code fault-tolerant gates and assuming error rates of one part per thousand, we show that one can error-correct quantum simulations of interesting, classically intractable instances with a few hundred thousand physical qubits.

[1]  Minh C. Tran,et al.  Locality and Digital Quantum Simulation of Power-Law Interactions , 2018, Physical review. X.

[2]  Pierre-François Loos,et al.  The uniform electron gas , 2016, 1601.03544.

[3]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[4]  Esslli Site,et al.  Models of Computation , 2012 .

[5]  I. Chuang,et al.  Hamiltonian Simulation by Qubitization , 2016, Quantum.

[6]  J. Hubbard Electron correlations in narrow energy bands , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[7]  Roberto Bruni,et al.  Models of Computation , 2017, Texts in Theoretical Computer Science. An EATCS Series.

[8]  Timothy C. Berkelbach,et al.  Spectral functions of the uniform electron gas via coupled-cluster theory and comparison to the GW and related approximations , 2015, 1512.04556.

[9]  Alán Aspuru-Guzik,et al.  On the Chemical Basis of Trotter-Suzuki Errors in Quantum Chemistry Simulation , 2014, 1410.8159.

[10]  D. Berry,et al.  Entanglement-free Heisenberg-limited phase estimation , 2007, Nature.

[11]  Alán Aspuru-Guzik,et al.  Exploiting Locality in Quantum Computation for Quantum Chemistry. , 2014, The journal of physical chemistry letters.

[12]  M. Hastings,et al.  Gate count estimates for performing quantum chemistry on small quantum computers , 2013, 1312.1695.

[13]  Yuan Su,et al.  Faster quantum simulation by randomization , 2018, Quantum.

[14]  Andrey E. Antipov,et al.  Solutions of the Two-Dimensional Hubbard Model: Benchmarks and Results from a Wide Range of Numerical Algorithms , 2015, 1505.02290.

[15]  J. Whitfield,et al.  Local spin operators for fermion simulations , 2016, 1605.09789.

[16]  David Poulin,et al.  The Trotter step size required for accurate quantum simulation of quantum chemistry , 2014, Quantum Inf. Comput..

[17]  Dmitri Maslov,et al.  Low-cost quantum circuits for classically intractable instances of the Hamiltonian dynamics simulation problem , 2018, npj Quantum Information.

[18]  Nathan Wiebe,et al.  Bounding the costs of quantum simulation of many-body physics in real space , 2016, 1608.05696.

[19]  L. Cooper,et al.  Theory of superconductivity , 1957 .

[20]  P. Alam ‘T’ , 2021, Composites Engineering: An A–Z Guide.

[21]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[22]  Craig Gidney,et al.  Halving the cost of quantum addition , 2017, Quantum.

[23]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[24]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[25]  Frank Verstraete,et al.  Quantum circuits for strongly correlated quantum systems , 2008, ArXiv.

[26]  Austin G. Fowler,et al.  Efficient magic state factories with a catalyzed|CCZ⟩to2|T⟩transformation , 2018, Quantum.

[27]  P. Alam ‘N’ , 2021, Composites Engineering: An A–Z Guide.

[28]  A. Kitaev,et al.  Fermionic Quantum Computation , 2000, quant-ph/0003137.

[29]  B HastingsMatthew,et al.  Improving quantum algorithms for quantum chemistry , 2015 .

[30]  H. M. Wiseman,et al.  How to perform the most accurate possible phase measurements , 2009, 0907.0014.

[31]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[32]  A. Fowler,et al.  Low overhead quantum computation using lattice surgery , 2018, 1808.06709.

[33]  Sarah E. Sofia,et al.  The Bravyi-Kitaev transformation: Properties and applications , 2015 .

[34]  Chandler Davis,et al.  A bound for the spectral variation of a unitary operator , 1984 .

[35]  Dmitri Maslov,et al.  Toward the first quantum simulation with quantum speedup , 2017, Proceedings of the National Academy of Sciences.

[36]  Ryan Babbush,et al.  Qubitization of Arbitrary Basis Quantum Chemistry Leveraging Sparsity and Low Rank Factorization , 2019, Quantum.

[37]  Yuan Su,et al.  Nearly optimal lattice simulation by product formulas , 2019, Physical review letters.

[38]  A. Ferris,et al.  Fourier transform for fermionic systems and the spectral tensor network. , 2013, Physical review letters.

[39]  Ryan Babbush,et al.  Low rank representations for quantum simulation of electronic structure , 2018, npj Quantum Information.

[40]  Austin G. Fowler,et al.  Optimal complexity correction of correlated errors in the surface code , 2013, 1310.0863.

[41]  E. Knill,et al.  Quantum algorithms for fermionic simulations , 2000, cond-mat/0012334.

[42]  A. Grüneis,et al.  Many-body quantum chemistry for the electron gas: convergent perturbative theories. , 2013, Physical review letters.

[43]  H. Neven,et al.  Quantum simulation of the Sachdev-Ye-Kitaev model by asymmetric qubitization , 2018, Physical Review A.

[44]  Ryan Babbush,et al.  Exponentially more precise quantum simulation of fermions in the configuration interaction representation , 2015, 1506.01029.

[45]  H. Neven,et al.  Low-Depth Quantum Simulation of Materials , 2018 .

[46]  Thomas M Henderson,et al.  Range-separated Brueckner coupled cluster doubles theory. , 2013, Physical review letters.

[47]  M. Hastings,et al.  Solving strongly correlated electron models on a quantum computer , 2015, 1506.05135.

[48]  Daniel Litinski,et al.  A Game of Surface Codes: Large-Scale Quantum Computing with Lattice Surgery , 2018, Quantum.

[49]  Naoto Nagaosa,et al.  Doping a Mott insulator: Physics of high-temperature superconductivity , 2004, cond-mat/0410445.

[50]  D. Abrams,et al.  Simulation of Many-Body Fermi Systems on a Universal Quantum Computer , 1997, quant-ph/9703054.

[51]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[52]  Austin G. Fowler,et al.  Surface code quantum computing by lattice surgery , 2011, 1111.4022.

[53]  S. Lloyd,et al.  Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors , 1998, quant-ph/9807070.

[54]  P. Love,et al.  The Bravyi-Kitaev transformation for quantum computation of electronic structure. , 2012, The Journal of chemical physics.

[55]  M. Mézard,et al.  Journal of Statistical Mechanics: Theory and Experiment , 2011 .

[56]  Jeongwan Haah,et al.  Quantum Algorithm for Simulating Real Time Evolution of Lattice Hamiltonians , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[57]  Annie Y. Wei,et al.  Exponentially more precise quantum simulation of fermions in second quantization , 2015, 1506.01020.

[58]  Alán Aspuru-Guzik,et al.  Quantum Simulation of Electronic Structure with Linear Depth and Connectivity. , 2017, Physical review letters.

[59]  Nathan Wiebe,et al.  Hamiltonian Simulation in the Interaction Picture , 2018, 1805.00675.

[60]  Teepanis Chachiyo Communication: Simple and accurate uniform electron gas correlation energy for the full range of densities. , 2016, The Journal of chemical physics.

[61]  Sandeep Sharma,et al.  PySCF: the Python‐based simulations of chemistry framework , 2018 .

[62]  Damian S. Steiger,et al.  Quantum Algorithm for Spectral Measurement with a Lower Gate Count. , 2017, Physical review letters.

[63]  E. Knill,et al.  Simulating physical phenomena by quantum networks , 2001, quant-ph/0108146.

[64]  F. Verstraete,et al.  Mapping local Hamiltonians of fermions to local Hamiltonians of spins , 2005, cond-mat/0508353.

[65]  Matthew B. Hastings,et al.  Improving quantum algorithms for quantum chemistry , 2014, Quantum Inf. Comput..

[66]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[67]  Hartmut Neven,et al.  Quantum simulation of chemistry with sublinear scaling in basis size , 2018, npj Quantum Information.

[68]  M. Birkner,et al.  Blow-up of semilinear PDE's at the critical dimension. A probabilistic approach , 2002 .

[69]  J. Gambetta,et al.  Tapering off qubits to simulate fermionic Hamiltonians , 2017, 1701.08213.

[70]  D. Berry,et al.  Improved techniques for preparing eigenstates of fermionic Hamiltonians , 2017, 1711.10460.

[71]  R. Feynman Simulating physics with computers , 1999 .

[72]  G. Vidal,et al.  Spectral tensor networks for many-body localization , 2014, 1410.0687.

[73]  M. Suzuki,et al.  General theory of fractal path integrals with applications to many‐body theories and statistical physics , 1991 .

[74]  Ali Alavi,et al.  A Full Configuration Interaction Perspective on the Homogeneous Electron Gas , 2011, 1109.2635.

[75]  Christof Zalka Efficient Simulation of Quantum Systems by Quantum Computers , 1996, quant-ph/9603026.

[76]  P. Corboz Improved energy extrapolation with infinite projected entangled-pair states applied to the two-dimensional Hubbard model , 2015, 1508.04003.

[77]  Jakob Nordström,et al.  Pebble Games, Proof Complexity, and Time-Space Trade-offs , 2013, Log. Methods Comput. Sci..

[78]  M. Troyer,et al.  Elucidating reaction mechanisms on quantum computers , 2016, Proceedings of the National Academy of Sciences.

[79]  I. Kassal,et al.  Polynomial-time quantum algorithm for the simulation of chemical dynamics , 2008, Proceedings of the National Academy of Sciences.

[80]  Matthias Troyer,et al.  Operator locality in the quantum simulation of fermionic models , 2017, 1701.07072.

[81]  Ryan Babbush,et al.  Majorana Loop Stabilizer Codes for Error Mitigation in Fermionic Quantum Simulations , 2018, 1812.08190.

[82]  Steven R White,et al.  Hybrid grid/basis set discretizations of the Schrödinger equation. , 2017, The Journal of chemical physics.

[83]  Andrew M. Childs,et al.  Simulating Hamiltonian dynamics with a truncated Taylor series. , 2014, Physical review letters.

[84]  Nathan Wiebe,et al.  Hamiltonian simulation using linear combinations of unitary operations , 2012, Quantum Inf. Comput..

[85]  Jstor,et al.  Proceedings of the American Mathematical Society , 1950 .

[86]  Nathan Wiebe,et al.  Efficient Bayesian Phase Estimation. , 2015, Physical review letters.

[87]  I. Chuang,et al.  Optimal Hamiltonian Simulation by Quantum Signal Processing. , 2016, Physical review letters.

[88]  Alexandru Paler,et al.  Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity , 2018, Physical Review X.

[89]  Daniel S. Levine,et al.  Postponing the orthogonality catastrophe: efficient state preparation for electronic structure simulations on quantum devices , 2018, 1809.05523.

[90]  D. Ceperley,et al.  Ground state of the two-dimensional electron gas. , 1989, Physical review. B, Condensed matter.

[91]  Martin Rötteler,et al.  Efficient synthesis of universal Repeat-Until-Success circuits , 2014, Physical review letters.

[92]  E. Wigner,et al.  Über das Paulische Äquivalenzverbot , 1928 .

[93]  Peter J. Love,et al.  Quantum Algorithms for Quantum Chemistry based on the sparsity of the CI-matrix , 2013, 1312.2579.

[94]  J. Whitfield,et al.  Simulation of electronic structure Hamiltonians using quantum computers , 2010, 1001.3855.

[95]  H. Trotter On the product of semi-groups of operators , 1959 .

[96]  George C. Schatz,et al.  The journal of physical chemistry letters , 2009 .

[97]  F K Wilhelm,et al.  Linear and Logarithmic Time Compositions of Quantum Many-Body Operators. , 2017, Physical review letters.

[98]  E. Wigner,et al.  About the Pauli exclusion principle , 1928 .

[99]  M. Hastings,et al.  Progress towards practical quantum variational algorithms , 2015, 1507.08969.

[100]  Yudong Cao,et al.  OpenFermion: the electronic structure package for quantum computers , 2017, Quantum Science and Technology.

[101]  WiebeNathan,et al.  The trotter step size required for accurate quantum simulation of quantum Chemistry , 2015 .

[102]  Kevin J. Sung,et al.  Quantum algorithms to simulate many-body physics of correlated fermions. , 2017, 1711.05395.

[103]  E. Campbell Random Compiler for Fast Hamiltonian Simulation. , 2018, Physical review letters.