Enhancing quantum cryptography with quantum dot single-photon sources

[1]  D. Bacco,et al.  Efficient room-temperature molecular single-photon sources for quantum key distribution. , 2022, Optics express.

[2]  Jake Iles-Smith,et al.  Tailoring solid-state single-photon sources with stimulated emissions , 2021, Nature Nanotechnology.

[3]  Fengmei M. Liu,et al.  Double-Pulse Generation of Indistinguishable Single Photons with Optically Controlled Polarization. , 2021, Nano letters.

[4]  T. Heindel,et al.  Quantum Communication Using Semiconductor Quantum Dots , 2021, Advanced Quantum Technologies.

[5]  P. Michler,et al.  Thin-film InGaAs metamorphic buffer for telecom C-band InAs quantum dots and optical resonators on GaAs platform , 2021, Nanophotonics.

[6]  K. Jöns,et al.  Stimulated Generation of Indistinguishable Single Photons from a Quantum Ladder System. , 2021, Physical review letters.

[7]  Zheng-Wei Zhou,et al.  Twin-field quantum key distribution over 830-km fibre , 2019, Nature Photonics.

[8]  P. Michler,et al.  Bright Purcell enhanced single-photon source in the telecom O-band based on a quantum dot in a circular Bragg grating , 2021, 2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[9]  J. Fischer,et al.  Resonance fluorescence of single In(Ga)As quantum dots emitting in the telecom C-band , 2021 .

[10]  J. Rarity,et al.  Practical quantum tokens without quantum memories and experimental tests , 2021, npj Quantum Information.

[11]  E. Diamanti,et al.  Multiphoton and Side-Channel Attacks in Mistrustful Quantum Cryptography , 2021, PRX Quantum.

[12]  N. Sangouard,et al.  Factoring 2048-bit RSA Integers in 177 Days with 13 436 Qubits and a Multimode Memory. , 2021, Physical review letters.

[13]  Fabio Sciarrino,et al.  Quantum key distribution with entangled photons generated on demand by a quantum dot , 2020, Science Advances.

[14]  S. F. Covre da Silva,et al.  Quantum cryptography with highly entangled photons from semiconductor quantum dots , 2020, Science Advances.

[15]  A. Wieck,et al.  A bright and fast source of coherent single photons , 2020, Nature Nanotechnology.

[16]  Priya,et al.  Bright Polarized Single-Photon Source Based on a Linear Dipole. , 2020, Physical review letters.

[17]  Jian-Wei Pan,et al.  Secure quantum key distribution with realistic devices , 2020 .

[18]  A. Wieck,et al.  Scalable integrated single-photon source , 2020, Science Advances.

[19]  E. Diamanti,et al.  Quantum weak coin flipping with a single photon , 2020, 2002.09005.

[20]  D. Reiter,et al.  A review on optical excitation of semiconductor quantum dots under the influence of phonons , 2019, Semiconductor Science and Technology.

[21]  Jian-Wei Pan,et al.  Coherently driving a single quantum two-level system with dichromatic laser pulses , 2019, Nature Physics.

[22]  Jian-Wei Pan,et al.  On-Demand Semiconductor Source of Entangled Photons Which Simultaneously Has High Fidelity, Efficiency, and Indistinguishability. , 2019, Physical review letters.

[23]  V. M. Axt,et al.  Emission-Frequency Separated High Quality Single-Photon Sources Enabled by Phonons. , 2019, Physical review letters.

[24]  E. Diamanti,et al.  Semi-device-independent quantum money with coherent states , 2018, Physical Review A.

[25]  I. Sagnes,et al.  Generation of non-classical light in a photon-number superposition , 2018, Nature Photonics.

[26]  Samuel H. Knarr,et al.  Introduction to the absolute brightness and number statistics in spontaneous parametric down-conversion , 2018, Journal of Optics.

[27]  S. Wehner,et al.  Quantum internet: A vision for the road ahead , 2018, Science.

[28]  F. Bussières,et al.  Secure Quantum Key Distribution over 421 km of Optical Fiber. , 2018, Physical review letters.

[29]  J. F. Dynes,et al.  Overcoming the rate–distance limit of quantum key distribution without quantum repeaters , 2018, Nature.

[30]  Shuo Sun,et al.  Quantum dot single-photon sources with ultra-low multi-photon probability , 2018, npj Quantum Information.

[31]  Jian-Wei Pan,et al.  Experimental preparation and verification of quantum money , 2017, 1709.05882.

[32]  Luke R. Wilson,et al.  High Purcell factor generation of indistinguishable on-chip single photons , 2017, Nature Nanotechnology.

[33]  V. Zwiller,et al.  On-demand generation of background-free single photons from a solid-state source , 2017, 1712.06937.

[34]  P. Senellart,et al.  High-performance semiconductor quantum-dot single-photon sources. , 2017, Nature nanotechnology.

[35]  J. Vučković,et al.  Pulsed Rabi oscillations in quantum two-level systems: beyond the area theorem , 2017, 1708.05444.

[36]  Iordanis Kerenidis,et al.  Experimental investigation of practical unforgeable quantum money , 2017, 1705.01428.

[37]  V. Zwiller,et al.  Phonon-Assisted Two-Photon Interference from Remote Quantum Emitters , 2017, Nano letters.

[38]  Peter Michler,et al.  Quantum Dots for Quantum Information Technologies , 2017 .

[39]  Y. Arakawa,et al.  Single-photon emission at 1.5 μm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities , 2016 .

[40]  Jian-Wei Pan,et al.  On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar. , 2016, Physical review letters.

[41]  I. Sagnes,et al.  Near-optimal single-photon sources in the solid state , 2015, Nature Photonics.

[42]  Christian Schaffner,et al.  Quantum cryptography beyond quantum key distribution , 2015, Designs, Codes and Cryptography.

[43]  Yasuhiko Arakawa,et al.  Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors , 2015, Scientific Reports.

[44]  B A Bell,et al.  Experimental demonstration of graph-state quantum secret sharing , 2014, Nature Communications.

[45]  Zhu Cao,et al.  Discrete-phase-randomized coherent state source and its application in quantum key distribution , 2014, 1410.3217.

[46]  J. Song,et al.  Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. , 2014, Physical review letters.

[47]  K. Jöns,et al.  On-demand generation of indistinguishable polarization-entangled photon pairs , 2013, Nature Photonics.

[48]  Yong Zhao,et al.  Experimental unconditionally secure bit commitment. , 2013, Physical review letters.

[49]  E. Diamanti,et al.  Experimental plug and play quantum coin flipping , 2013, Nature Communications.

[50]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[51]  S. Wehner,et al.  Experimental bit commitment based on quantum communication and special relativity. , 2013, Physical review letters.

[52]  Jian-Wei Pan,et al.  On-demand semiconductor single-photon source with near-unity indistinguishability. , 2012, Nature nanotechnology.

[53]  Eleni Diamanti,et al.  Experimental demonstration of long-distance continuous-variable quantum key distribution , 2012, Nature Photonics.

[54]  Christian Schneider,et al.  Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range , 2012 .

[55]  S. Wehner,et al.  Experimental implementation of bit commitment in the noisy-storage model , 2012, Nature Communications.

[56]  X-Q Zhou,et al.  Experimental realization of Shor's quantum factoring algorithm using qubit recycling , 2011, Nature Photonics.

[57]  Gilles Brassard,et al.  Experimental loss-tolerant quantum coin flipping , 2011, Nature communications.

[58]  V. Ojha,et al.  Limitations of Practical Quantum Cryptography , 2011 .

[59]  P. J. Clarke,et al.  Quantum key distribution system in standard telecommunications fiber using a short wavelength single photon source , 2010, 1004.4754.

[60]  Sellami Ali,et al.  DECOY STATE QUANTUM KEY DISTRIBUTION , 2010 .

[61]  O. Z. Karimov,et al.  Quantum communication using single photons from a semiconductor quantum dot emitting at a telecommunication wavelength , 2009 .

[62]  Xiongfeng Ma Quantum cryptography: theory and practice , 2008 .

[63]  Tao Zhang,et al.  Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source. , 2008, Physical review letters.

[64]  Yasuhiko Arakawa,et al.  An optical horn structure for single-photon source using quantum dots at telecommunication wavelengtha) , 2007 .

[65]  J. Preskill,et al.  Security of quantum key distribution using weak coherent states with nonrandom phases , 2006, Quantum Inf. Comput..

[66]  R. Renner,et al.  Lower and upper bounds on the secret-key rate for quantum key distribution protocols using one-way classical communication. , 2004, Physical review letters.

[67]  John Preskill,et al.  Security of quantum key distribution with imperfect devices , 2002, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[68]  Kyo Inoue,et al.  Secure communication: Quantum cryptography with a photon turnstile , 2002, Nature.

[69]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[70]  Stephen Wiesner,et al.  Conjugate coding , 1983, SIGA.