Fractional differential equations for the generalized Mittag-Leffler function

In this paper, we establish some (presumably new) differential equation formulas for the extended Mittag-Leffler-type function by using the Saigo-Maeda fractional differential operators involving the Appell function F3(⋅)$F_{3}(\cdot)$ and results in terms of the Wright generalized hypergeometric-type function ψn+1({κl}l∈N0)m+1(z;p)${}_{m+1}\psi^{(\{\kappa_{l}\}_{l\in\mathbb{N}_{0}} )}_{n+1}(z; p)$ recently established by Agarwal. Some interesting special cases are also pointed out.

[1]  Qasem M. Al-Mdallal,et al.  Fractional-order Legendre-collocation method for solving fractional initial value problems , 2018, Appl. Math. Comput..

[2]  Praveen Agarwal,et al.  Further Results on Fractional Calculus of Saigo Operators , 2012 .

[3]  P. Agarwal Some inequalities involving Hadamard‐type k‐fractional integral operators , 2017 .

[4]  Qasem M. Al-Mdallal,et al.  A Convergent Algorithm for Solving Higher-Order Nonlinear Fractional Boundary Value Problems , 2015 .

[5]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[6]  Toufik Mansour,et al.  Further extended Caputo fractional derivative operator and its applications , 2017 .

[7]  Anatoly A. Kilbas,et al.  Generalized Fractional Calculus of the H-Function , 1999 .

[8]  K. K. Kataria,et al.  The Generalized $K$-Wright Function and Marichev-Saigo-Maeda Fractional Operators , 2014, 1408.4762.

[9]  Hari M. Srivastava,et al.  Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel , 2009, Appl. Math. Comput..

[10]  Yeol Je Cho,et al.  Advances in Real and Complex Analysis with Applications , 2017 .

[11]  Taekyun Kim,et al.  Some Identities on Bernoulli and Hermite Polynomials Associated with Jacobi Polynomials , 2012 .

[12]  Fractional Integration of the Product of Two Multivariables H-Function and a General Class of Polynomials , 2013 .

[13]  T. R. Prabhakar A SINGULAR INTEGRAL EQUATION WITH A GENERALIZED MITTAG LEFFLER FUNCTION IN THE KERNEL , 1971 .

[14]  PRAVEEN AGARWAL,et al.  FURTHER RESULTS ON FRACTIONAL CALCULUS OF SRIVASTAVA POLYNOMIALS , 2011 .

[15]  P. Agarwal Generalized fractional integration of the \overline{H}-function , 2012 .

[16]  Taekyun Kim,et al.  Some identities involving Gegenbauer polynomials , 2012, 1207.7165.

[17]  Megumi Saigo,et al.  A remark on integral operators involving the Gauss hypergeometric functions , 1978 .

[18]  Mehmet Ali Özarslan,et al.  The extended Mittag-Leffler function and its properties , 2014 .

[19]  R. K. Parmar A Class of Extended Mittag-Leffler Functions and Their Properties Related to Integral Transforms and Fractional Calculus , 2015 .

[20]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[21]  Praveen Agarwal Certain Properties of the Generalized Gauss Hypergeometric Functions , 2014 .

[22]  S. Sharma,et al.  Certain Properties of Extended Wright Generalized Hypergeometric Function , 2014 .

[23]  Hari M. Srivastava,et al.  A Class of Extended Fractional Derivative Operators and Associated Generating Relations Involving Hypergeometric Functions , 2012, Axioms.

[24]  H. Kober ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .

[25]  Toufik Mansour,et al.  Degenerate Mittag-Leffler polynomials , 2016, Appl. Math. Comput..