Photothermal heating enabled by plasmonic nanostructures for electrokinetic manipulation and sorting of particles.

Plasmonic nanostructures support strong electromagnetic field enhancement or optical "hot spots" that are accompanied by local heat generation. This heating effect is generally seen as an obstacle to stable trapping of particles on a plasmonic substrate. In this work, instead of treating the heating effect as a hindrance, we utilized the collective photoinduced heating of the nanostructure array for high-throughput trapping of particles on a plasmonic nanostructured substrate. The photoinduced heating of the nanostructures is combined with an ac electric field of less than 100 kHz, which results in creation of a strong electrothermal microfluidic flow. This flow rapidly transports suspended particles toward the plasmonic substrate, where they are captured by local electric field effects. This work is envisioned to have application in biosensing and surface-enhanced spectroscopies such as SERS.

[1]  Arthur Ashkin,et al.  Optical Trapping and Manipulation of Neutral Particles Using Lasers , 1999 .

[2]  Wei Li,et al.  Probing and controlling photothermal heat generation in plasmonic nanostructures. , 2013, Nano letters.

[3]  Wei-Yi Tsai,et al.  Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral. , 2014, Nano letters.

[4]  Kin Hung Fung,et al.  Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting. , 2012, Nano letters.

[5]  H. Morgan,et al.  Ac electrokinetics: a review of forces in microelectrode structures , 1998 .

[6]  A. Govorov,et al.  Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. , 2009, Nano letters.

[7]  Kishan Dholakia,et al.  Optical forces near a nanoantenna , 2010 .

[8]  Peter Nordlander,et al.  Solar vapor generation enabled by nanoparticles. , 2013, ACS nano.

[9]  Charles R. Sullivan,et al.  Limits of localized heating by electromagnetically excited nanoparticles , 2006 .

[10]  Keiji Sasaki,et al.  Nanostructured potential of optical trapping using a plasmonic nanoblock pair. , 2013, Nano letters.

[11]  Marc J. Assael,et al.  Standard Reference Data for the Thermal Conductivity of Water , 1995 .

[12]  Yong-Hee Lee,et al.  Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas. , 2011, Nature communications.

[13]  F. Kulzer,et al.  Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy. , 2009, Optics express.

[14]  Kimani C Toussaint,et al.  Understanding and controlling plasmon-induced convection , 2014, Nature Communications.

[15]  M. Dickinson,et al.  Nanometric optical tweezers based on nanostructured substrates , 2008 .

[16]  K. Neuman,et al.  Optical trapping. , 2004, The Review of scientific instruments.

[17]  Xiaobo Yin,et al.  Plasmonic Brownian ratchet , 2013, 1401.6194.

[18]  Yasuyuki Tsuboi,et al.  Temperature near Gold Nanoparticles under Photoexcitation: Evaluation Using a Fluorescence Correlation Technique , 2013 .

[19]  Jae-Sung Kwon,et al.  Optically modulated electrokinetic manipulation and concentration of colloidal particles near an electrode surface. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[20]  Serge Monneret,et al.  Photoinduced heating of nanoparticle arrays. , 2013, ACS nano.

[21]  Marek Piliarik,et al.  High-resolution biosensor based on localized surface plasmons. , 2012, Optics express.

[22]  J. Kestin,et al.  Viscosity of Liquid Water in the Range - 8 C to 150 C, , 1978 .

[23]  Xudong Fan,et al.  Optofluidic Microsystems for Chemical and Biological Analysis. , 2011, Nature photonics.

[24]  Jürgen Popp,et al.  Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device. , 2011, Lab on a chip.

[25]  G. Baffou,et al.  Plasmon-Assisted Opto fl uidics , 2011 .

[26]  Alexander O. Govorov,et al.  Generating heat with metal nanoparticles , 2007 .

[27]  Tatsuya Shoji,et al.  Reversible Photoinduced Formation and Manipulation of a Two-Dimensional Closely Packed Assembly of Polystyrene Nanospheres on a Metallic Nanostructure , 2013 .

[28]  Romain Quidant,et al.  Thermo‐plasmonics: using metallic nanostructures as nano‐sources of heat , 2013 .

[29]  H. Richardson,et al.  Local temperature determination of optically excited nanoparticles and nanodots. , 2011, Nano letters.

[30]  Romain Quidant,et al.  Plasmon-assisted optofluidics. , 2011, ACS nano.

[31]  E. Schonbrun,et al.  Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink. , 2011, Nature communications.

[32]  M. Hanack,et al.  A Simple Method for the Subdivision of ITO Glass Substrates , 1999 .

[33]  D. Beebe,et al.  A particle image velocimetry system for microfluidics , 1998 .

[34]  Ya-Tang Yang,et al.  Transport and trapping in two-dimensional nanoscale plasmonic optical lattice. , 2013, Nano letters.

[35]  Romain Quidant,et al.  Plasmon nano-optical tweezers , 2011 .

[36]  Romain Quidant,et al.  Heat generation in plasmonic nanostructures: Influence of morphology , 2009 .

[37]  Romain Quidant,et al.  Nanoscale control of optical heating in complex plasmonic systems. , 2010, ACS nano.

[38]  Serkan Bütün,et al.  Electron beam lithography designed silver nano-disks used as label free nano-biosensors based on localized surface plasmon resonance. , 2012, Optics express.

[39]  Romain Quidant,et al.  Plasmon-Assisted Optofluidics , 2013 .

[40]  Amr A E Saleh,et al.  Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures. , 2012, Nano letters.

[41]  Stuart J. Williams,et al.  Electrokinetic patterning of colloidal particles with optical landscapes. , 2008, Lab on a chip.

[42]  Serge Monneret,et al.  Thermal imaging of nanostructures by quantitative optical phase analysis. , 2012, ACS nano.