The effect of the nanogranular nature of shale on their poroelastic behavior

Natural composite materials are highly heterogeneous porous materials, with porosities that manifest themselves at scales much below the macroscale of engineering applications. A typical example is shale, the transverse isotropic sealing formation of most hydrocarbon bearing reservoirs. By means of a closed loop approach of microporomechanics modeling, calibration and validation of elastic properties at multiple length scales of shale, we show that the nanogranular nature of this highly heterogeneous material translates into a unique poroelastic signature. The self-consistent scaling of the porous clay stiffness with the clay packing density minimizes the anisotropy of the Biot pore pressure coefficients; whereas the intrinsic anisotropy of the elementary particle translates into a pronounced anisotropy of the Skempton coefficients. This new microporoelasticity model depends only on two shale-specific material parameters which neatly summarize clay mineralogy and bulk density, and which makes the model most appealing for quantitative geomechanics, geophysics and exploitation engineering applications.

[1]  F. Ulm,et al.  The nanogranular nature of C–S–H , 2007 .

[2]  André Zaoui,et al.  Structural morphology and constitutive behaviour of microheterogeneous materials , 1997 .

[3]  L. Thomsen Weak elastic anisotropy , 1986 .

[4]  T. Johansen,et al.  Rock physics modelling of shale diagenesis , 2006, Petroleum Geoscience.

[5]  A. Nur,et al.  Elastic properties of dry clay mineral aggregates, suspensions and sandstones , 2003 .

[6]  R. M. Bradley,et al.  Orientational Order in Amorphous Packings of Ellipsoids , 1994 .

[7]  Franz-Josef Ulm,et al.  Grid indentation analysis of composite microstructure and mechanics: Principles and validation , 2006 .

[8]  Manika Prasad,et al.  Measurement of Young's modulus of clay minerals using atomic force acoustic microscopy , 2002 .

[9]  R. Grim The History of the Development of Clay Mineralogy , 1988 .

[10]  M. Cates,et al.  Effective elastic properties of solid clays , 2001 .

[11]  C. Mccann,et al.  Velocity anisotropy and attenuation of shale in under‐ and overpressured conditions , 2002 .

[12]  R. Jeanloz,et al.  Introduction to the physics of rocks , 1994 .

[13]  P. L. Hall,et al.  Pore size distribution of shaley rock by small angle neutron scattering , 1983 .

[14]  R. Hill A self-consistent mechanics of composite materials , 1965 .

[15]  E. Kaarsberg Introductory Studies of Natural and Artificial Argillaceous Aggregates by Sound-Propagation and X-ray Diffraction Methods , 1959, The Journal of Geology.

[16]  A. Zaoui Continuum Micromechanics: Survey , 2002 .

[17]  R. H. Bennett,et al.  Determinants of Clay and Shale Microfabric Signatures: Processes and Mechanisms , 1991 .

[18]  James K. Mitchell,et al.  Fundamentals of soil behavior , 1976 .

[19]  J. Rice,et al.  Some basic stress diffusion solutions for fluid‐saturated elastic porous media with compressible constituents , 1976 .

[20]  J. Berryman,et al.  Realizability of negative pore compressibility in poroelastic composites , 1995 .

[21]  A. Cheng,et al.  Mandel's problem revisited , 1996 .

[22]  J. Berryman,et al.  Exact results for generalized Gassmann's equations in composite porous media with two constituents , 1991 .

[23]  Y. Abousleiman,et al.  Acoustic and Quasistatic Laboratory Measurement and Calibration of the Pore Pressure Prediction Coefficient in the Poroelastic Theory , 2005 .

[24]  Peter Helnwein,et al.  Some remarks on the compressed matrix representation of symmetric second-order and fourth-order tensors , 2001 .

[25]  Dinesh R. Katti,et al.  Modeling the response of pyrophyllite interlayer to applied stress using steered molecular dynamics , 2005 .

[26]  Franz-Josef Ulm,et al.  Microporomechanics: Dormieux/Microporomechanics , 2006 .

[27]  J. Castagna,et al.  Relationships between compressional‐wave and shear‐wave velocities in clastic silicate rocks , 1985 .

[28]  G. Strang Introduction to Linear Algebra , 1993 .

[29]  Y. Abousleiman,et al.  Poroelastic solutions in transversely isotropic media for wellbore and cylinder , 1998 .

[30]  L. Dormieux,et al.  Applied micromechanics of porous materials , 2005 .

[31]  B. Hornby Experimental laboratory determination of the dynamic elastic properties of wet, drained shales , 1998 .

[32]  H. Ledbetter,et al.  Elastic constants of natural quartz. , 2003, The Journal of the Acoustical Society of America.

[33]  Christian Hellmich,et al.  Mineral–collagen interactions in elasticity of bone ultrastructure – a continuum micromechanics approach , 2004 .

[34]  T. Johansen,et al.  Anisotropic approximations for mudrocks : A seismic laboratory study , 2000 .

[35]  Younane N. Abousleiman,et al.  Solutions for the Inclined Borehole in a Porothermoelastic Transversely Isotropic Medium , 2005 .

[36]  D. Dewhurst,et al.  Impact of fabric, microcracks and stress field on shale anisotropy , 2006 .

[37]  Christian Hellmich,et al.  Can the diverse elastic properties of trabecular and cortical bone be attributed to only a few tissue-independent phase properties and their interactions? , 2004, Biomechanics and modeling in mechanobiology.

[38]  Robert W. Zimmerman,et al.  Coupling in poroelasticity and thermoelasticity , 2000 .

[39]  James G. Berryman,et al.  The elastic coefficients of double‐porosity models for fluid transport in jointed rock , 1995 .

[40]  Y. Abousleiman,et al.  Acoustic Measurements of the Anisotropy of Dynamic Elastic and Poromechanics Moduli under Three Stress/Strain Pathways , 2005 .

[41]  Franz-Josef Ulm,et al.  Poromechanics III - Biot Centennial (1905-2005) : Proceedings of the 3rd Biot Conference on Poromechanics, 24-27 May 2005, Norman, Oklahoma, USA , 2005 .

[42]  Amos Nur,et al.  COMPRESSIONAL VELOCITY AND POROSITY IN SAND-CLAY MIXTURES , 1992 .

[43]  B. Auld,et al.  Acoustic fields and waves in solids , 1973 .

[44]  F. Ulm,et al.  The nano-mechanical morphology of shale , 2008 .

[45]  E. Liniger,et al.  Random loose packings of uniform spheres and the dilatancy onset. , 1990, Physical review letters.

[46]  Zhijing Wang,et al.  Seismic Anisotropy In Sedimentary Rocks , 2001 .

[47]  Herbert F. Wang,et al.  Ultrasonic velocities in Cretaceous shales from the Williston basin , 1981 .

[48]  A. Nur,et al.  Effects of porosity and clay content on wave velocities in sandstones , 1986 .

[49]  D. Farber,et al.  Aggregate and single-crystalline elasticity of hcp cobalt at high pressure , 2005 .

[50]  G. Dvorak,et al.  Rate form of the Eshelby and Hill tensors , 2002 .

[51]  L. Pratson,et al.  Predicting seismic velocity and other rock properties from clay content only , 2003 .

[52]  Craig J. Hickey,et al.  Mechanics of porous media , 1994 .

[53]  James G. Berryman,et al.  EXTENSION OF POROELASTIC ANALYSIS TO DOUBLE-POROSITY MATERIALS: NEW TECHNIQUE IN MICROGEOMECHANICS , 2002 .

[54]  Franz-Josef Ulm,et al.  The nanogranular nature of shale , 2006 .

[55]  John A. Hudson,et al.  T-matrix approach to shale acoustics , 2003 .

[56]  Michael E. Cates,et al.  Seismic monitoring of a CO2 flood in a carbonate reservoir: A rock physics study , 1998 .

[57]  N. Laws A note on penny-shaped cracks in transversely isotropic materials , 1985 .

[58]  L. Dormieux,et al.  Comportement macroscopique des matriaux poreux microstructure en feuillets , 2006 .

[59]  Zhijing Wang Seismic anisotropy in sedimentary rocks, part 1: A single‐plug laboratory method , 2002 .

[60]  John A. Hudson,et al.  Anisotropic effective‐medium modeling of the elastic properties of shales , 1994 .

[61]  L. A. Galin,et al.  CONTACT PROBLEMS IN THE THEORY OF ELASTICITY , 1961 .

[62]  Christian Hellmich,et al.  Drained and Undrained Poroelastic Properties of Healthy and Pathological Bone: A Poro-Micromechanical Investigation , 2005 .

[63]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[64]  Franz-Josef Ulm,et al.  Material invariant poromechanics properties of shales , 2005 .

[65]  C. Sayers,et al.  The elastic anisotrophy of shales , 1994 .

[66]  Pierre Suquet,et al.  Continuum Micromechanics , 1997, Encyclopedia of Continuum Mechanics.

[67]  E. Kröner Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls , 1958 .

[68]  Alain Molinari,et al.  Micromechanical approach to the behavior of poroelastic materials , 2002 .

[69]  E. Kroner Self-consistent scheme and graded disorder in polycrystal elasticity , 1978 .

[70]  T. Mukerji,et al.  The Rock Physics Handbook: Contents , 2009 .

[71]  B. Budiansky On the elastic moduli of some heterogeneous materials , 1965 .

[72]  Luc Dormieux,et al.  Micromechanics of saturated and unsaturated porous media , 2002 .

[73]  F. Ulm,et al.  Explicit approximations of the indentation modulus of elastically orthotropic solids for conical indenters , 2004 .

[74]  C. Sayers Stress‐dependent seismic anisotropy of shales , 1999 .

[75]  L. Thomsen Seismic anisotropyGeophysics in the new millennium , 2001 .

[76]  A. Skempton THE PORE-PRESSURE COEFFICIENTS A AND B , 1954 .

[77]  Pierre M. Adler,et al.  GEOMETRICAL AND TRANSPORT PROPERTIES OF RANDOM PACKINGS OF SPHERES AND ASPHERICAL PARTICLES , 1997 .

[78]  J. Korringa,et al.  On the Dependence of the Elastic Properties of a Porous Rock on the Compressibility of the Pore Fluid , 1975 .

[79]  A model for hydrostatic consolidation of Pierre shale , 1991 .

[80]  Sidney Diamond,et al.  Mercury porosimetry: An inappropriate method for the measurement of pore size distributions in cement-based materials , 2000 .