Stabilizing predictive visual feedback control for fixed camera systems

This paper investigates vision-based robot control via a receding horizon control strategy for fixed camera systems, as stabilizing predictive visual feedback control. First, a visual motion robot error system with a fixed camera configuration is reconstructed in order to improve estimation performance. Next, stabilizing receding horizon control for three-dimensional visual feedback systems, which are highly nonlinear and relatively fast systems, is proposed. The stability of the receding horizon control scheme is guaranteed by using a terminal cost derived from an energy function of the visual motion robot error system. Furthermore, simulation and actual nonlinear experimental results are assessed with respect to stability and performance. © 2011 Wiley Periodicals, Inc. Electron Comm Jpn, 94(8): 1–11, 2011; Published online in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/ecj.10357

[1]  A. D. Lewis,et al.  Geometric Control of Mechanical Systems , 2004, IEEE Transactions on Automatic Control.

[2]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[3]  Jie Yu,et al.  Unconstrained receding-horizon control of nonlinear systems , 2001, IEEE Trans. Autom. Control..

[4]  Toshiyuki Ohtsuka,et al.  A continuation/GMRES method for fast computation of nonlinear receding horizon control , 2004, Autom..

[5]  M. Fujita,et al.  Experiments on Stabilizing Receding Horizon Control of Visual Feedback System with Planar Manipulators , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[6]  Masayuki Fujita,et al.  EXPERIMENTS ON STABILIZING RECEDING HORIZON CONTROL OF A DIRECT DRIVE MANIPULATOR , 2005 .

[7]  Masayuki Fujita,et al.  Passivity-based control on dynamic visual feedback systems with movable camera configuration , 2009 .

[8]  Masayuki Fujita,et al.  An experimental study of stabilizing receding horizon control of visual feedback system with planar manipulators , 2007 .

[9]  Bradley J. Nelson,et al.  Autonomous Injection of Biological Cells Using Visual Servoing , 2000, ISER.

[10]  François Chaumette,et al.  Visual servo control. I. Basic approaches , 2006, IEEE Robotics & Automation Magazine.

[11]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[12]  G. Hirzinger,et al.  Self-guided robotic camera control for laparoscopic surgery compared with human camera control. , 1999, American journal of surgery.

[13]  Luc Soler,et al.  Active filtering of physiological motion in robotized surgery using predictive control , 2005, IEEE Transactions on Robotics.

[14]  M. Fujita,et al.  Passivity-based control and estimation of dynamic visual feedback systems with a fixed camera , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[15]  Hiroyuki Kawai,et al.  Passivity-Based Dynamic Visual Feedback Control for Three-Dimensional Target Tracking: Stability and $L_{2}$-Gain Performance Analysis , 2007, IEEE Transactions on Control Systems Technology.

[16]  M. Spong,et al.  Robot Modeling and Control , 2005 .

[17]  Alexandre Krupa,et al.  Control of an ultrasound probe by adaptive visual servoing , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Friedrich Lange,et al.  Predictive Visual Tracking of Lines by Industrial Robots , 2003, Int. J. Robotics Res..

[19]  Richard M. Murray,et al.  Receding horizon control of vectored thrust flight experiment , 2005 .

[20]  Arthur C. Sanderson,et al.  Vision-Based Predictive Robotic Tracking of a Moving Target. , 1982 .

[21]  François Chaumette,et al.  Visual servo control. II. Advanced approaches [Tutorial] , 2007, IEEE Robotics & Automation Magazine.