Geomorphological applications of cosmogenic isotope analysis

Cosmogenic isotope analysis involves the measurement of cosmogenic nuclides that have accumulated in the upper few metres of the Earth’s surface as a result of interactions between cosmic rays and target elements. The concentrations of these cosmogenic nuclides can provide quantitative estimates of the timing and rate of geomorphic processes. In dating applications the concentration of cosmogenic nuclides is interpreted as reflecting the time elapsed since a surface exposure event. However, over most of the Earth’s surface for most of the time the landsurface experiences incremental denudation and in these circumstances cosmogenic nuclide concentrations are related to the rate of denudation. Applications of event dating using cosmogenic isotopes include constructional landforms such as volcanic and depositional features, fault displacement, meteorite impacts, rapid mass movement, bedrock surfaces rapidly eroded by fluvial or wave action or exposed by glacial retreat, and the burial of sediment or ice. Strategies for quantifying rates of incremental change include estimates of denudation rates from site-specific samples and from fluvial sediment samples reflecting catchment-wide rates, and measurements of cosmogenic nuclide concentrations in soils and regolith to quantify rates of rock weathering. The past decade has seen a rapid growth in applications of cosmogenic isotope analysis to a wide range of geomorphological problems, and the technique is now playing a major role in dating and quantifying rates of landscape change over timescales of several thousands to several millions of years.

[1]  D. Fink,et al.  41Ca: Measurement by accelerator mass spectrometry and applications , 1990 .

[2]  P. Kubik,et al.  10 Be dating of Younger Dryas Salpausselkä I formation in Finland , 2000 .

[3]  R. Wieler,et al.  Dating of Sirius Group tillites in the Antarctic Dry Valleys with cosmogenic3He and21Ne , 1997 .

[4]  W. Phillips A review of cosmogenic nuclide surface exposure dating: new challenges for Scottish geomorphology , 2001 .

[5]  B. Hallet,et al.  Surface Dating of Dynamic Landforms: Young Boulders on Aging Moraines , 1994, Science.

[6]  William E. Dietrich,et al.  Quantification of soil production and downslope creep rates from cosmogenic 10Be accumulations on a hillslope profile , 1993 .

[7]  D. Bourlès,et al.  Brazilian laterite dynamics using in situ-produced 10Be , 1998 .

[8]  M. Caffee,et al.  Mid-Pleistocene cosmogenic minimum-age limits for pre-Wisconsinan glacial surfaces in southwestern Minnesota and southern Baffin Island: a multiple nuclide approach , 1999 .

[9]  P. Clark,et al.  Calibration of cosmogenic 3He production rates from Holocene lava flows in Oregon, USA, and effects of the Earth's magnetic field , 1999 .

[10]  M. Kurz In situ production of terrestrial cosmogenic helium and some applications to geochronology , 1986 .

[11]  K. Nishiizumi,et al.  Cosmic ray produced 10Be and 26Al in Antarctic rocks: exposure and erosion history , 1991 .

[12]  A. Jull,et al.  On determining ice accumulation rates in the past 40,000 years using in situ cosmogenic 14C , 1990 .

[13]  M. Strecker,et al.  Low slip rates and long-term preservation of geomorphic features in Central Asia , 2002, Nature.

[14]  K. Nishiizumi,et al.  Cosmic ray production rates of 10Be and 26Al in quartz from glacially polished rocks , 1989 .

[15]  E. McDonald,et al.  Dating soils and alluvium with cosmogenic 21Ne depth profiles: case studies from the Pajarito Plateau, New Mexico, USA , 1998 .

[16]  B. Srinivasan Barites: anomalous xenon from spallation and neutron-induced reactions , 1976 .

[17]  K. Lambeck,et al.  A Lateglacial age for the Main Rock Platform, western Scotland , 1996 .

[18]  T. Dunai,et al.  Late Neogene passive margin denudation history: cosmogenic isotope measurements from Central Namib desert. , 2001 .

[19]  R. Poreda,et al.  Cosmogenic 3He and 21Ne age of the Big Lost River flood, Snake River Plain, Idaho , 1994 .

[20]  D. Fink Accelerator Mass Spectrometry: Ultrasensitive Analysis for Global Science , 1998 .

[21]  D. Bourlès,et al.  Seismic hazard reappraisal from combined structural geology, geomorphology and cosmic ray exposure dating analyses: the Eastern Precordillera thrust system (NW Argentina) , 2002 .

[22]  P. Schroeder,et al.  Apparent gibbsite growth ages for regolith in the Georgia Piedmont , 2001 .

[23]  Accelerator mass spectrometry and its applications , 1999 .

[24]  R. V. Balen,et al.  Contrasting Neogene denudation histories of different structural regions in the Transantarctic Mountains rift flank constrained by cosmogenic isotope measurements , 1999 .

[25]  F. Phillips,et al.  An Alluvial Surface Chronology Based on Cosmogenic36Cl Dating, Ajo Mountains (Organ Pipe Cactus National Monument), Southern Arizona , 1996 .

[26]  D. Sugden,et al.  Formation of patterned ground and sublimation till over Miocene glacier ice in Beacon Valley, southern Victoria Land, Antarctica , 2002 .

[27]  P. Kubik,et al.  The age of the Köfels event - relative, 14C and cosmogenic isotope dating of an early Holocene landslide in the central Alps (Tyrol, Austria) , 1998 .

[28]  Jane Poths,et al.  3He surface exposure dating and its implications for magma evolution in the Potrillo volcanic field, Rio Grande Rift, New Mexico, USA , 1992 .

[29]  James N. Brune,et al.  DATING PRECARIOUSLY BALANCED ROCKS IN SEISMICALLY ACTIVE PARTS OF CALIFORNIA AND NEVADA , 1998 .

[30]  M. Clarke,et al.  Asynchronous glaciation at Nanga Parbat, northwestern Himalaya Mountains, Pakistan , 2000 .

[31]  M. Shepard,et al.  Cosmogenic exposure ages of basalt flows: Lunar Crater volcanic field, Nevada , 1995 .

[32]  J. Braun,et al.  Application of in situ-produced cosmogenic 10Be and 26Al to the study of lateritic soil development in tropical forest: theory and examples from Cameroon and Gabon , 2000 .

[33]  William E. Dietrich,et al.  Cosmogenic nuclides, topography, and the spatial variation of soil depth , 1999 .

[34]  R. Wieler,et al.  Limited Pliocene/Pleistocene glaciation in Deep Freeze Range, northern Victoria Land, Antarctica, derived from in situ cosmogenic nuclides , 2003, Antarctic Science.

[35]  J. Briner,et al.  Using inherited cosmogenic 36Cl to constrain glacial erosion rates of the Cordilleran ice sheet , 1998 .

[36]  R. Reedy,et al.  Terrestrial cosmogenic-nuclide production systematics calculated from numerical simulations , 1995 .

[37]  M. Caffee,et al.  Cosmogenic Ages for Earthquake Recurrence Intervals and Debris Flow Fan Deposition, Owens Valley, California , 1995, Science.

[38]  P. Kubik,et al.  Constraints for the latest glacial advance on Wrangel Island, Arctic Ocean, from rock surface exposure dating , 2001 .

[39]  Fred M. Phillips,et al.  Cosmogenic 36Cl dating of the Foothills erratics train, Alberta, Canada , 1997 .

[40]  P. Kubik,et al.  Minimum 10Be exposure ages of early Pliocene for the Table Mountain plateau and the Sirius Group at Mount Fleming, Dry Valleys, Antarctica , 1995 .

[41]  M. Caffee,et al.  Quantifying sediment transport on desert piedmonts using 10Be and 26Al , 2002 .

[42]  C. Riebe,et al.  Quantifying quartz enrichment and its consequences for cosmogenic measurements of erosion rates from alluvial sediment and regolith , 2001 .

[43]  D. Bourlès,et al.  The development of iron crust lateritic systems in Burkina Faso, West Africa examined with in-situ-produced cosmogenic nuclides , 1994 .

[44]  D. Bourlès,et al.  Cosmogenic dating ranging from 20 to 700 ka of a series of alluvial fan surfaces affected by the El Tigre fault, Argentina , 1997 .

[45]  J. Brigham‐Grette,et al.  The Age and Origin of the Little Diomede Island Upland Surface , 2001 .

[46]  P. Johansson,et al.  Formation of Fe(III) oxyhydroxide colloids in freshwater and brackish seawater, with incorporation of phosphate and calcium , 2002 .

[47]  R. Reedy,et al.  Overview of the Workshop on Secular Variations in Production Rates of Cosmogenic Nuclides on Earth , 1996, Radiocarbon.

[48]  M. Caffee,et al.  Holocene left-slip rate determined by cosmogenic surface dating on the Xidatan segment of the Kunlun fault (Qinghai, China) , 1998 .

[49]  P. Bierman Using in situ produced cosmogenic isotopes to estimate rates of landscape evolution: A review from the geomorphic perspective , 1994 .

[50]  D. Fabel,et al.  Pliocene−Pleistocene incision of the Green River, Kentucky, determined from radioactive decay of cosmogenic 26Al and 10Be in Mammoth Cave sediments , 2001 .

[51]  Marc W. Caffee,et al.  Incision and differential bedrock uplift along the Indus River near Nanga Parbat, Pakistan Himalaya, from 10Be and 26Al exposure age dating of bedrock straths , 1998 .

[52]  A. Mccabe,et al.  New data for the Last Glacial Maximum in Great Britain and Ireland , 2002 .

[53]  H. Craig,et al.  Cosmogenic He in terrestrial rocks: The summit lavas of Maui. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[54]  William E. Dietrich,et al.  Stochastic processes of soil production and transport: erosion rates, topographic variation and cosmogenic nuclides in the Oregon Coast Range , 2001 .

[55]  A. Jull,et al.  In-Situ Cosmogenic 14C: Production and Examples of its Unique Applications in Studies of Terrestrial and Extraterrestrial Processes , 2001, Radiocarbon.

[56]  M. Kurz Cosmogenic helium in a terrestrial igneous rock , 1986, Nature.

[57]  R. Anderson,et al.  Dating fluvial terraces with and profiles: application to the Wind River, Wyoming , 1999 .

[58]  P. Kubik,et al.  10BE AND 26AL PRODUCTION RATES DEDUCED FROM AN INSTANTANEOUS EVENT WITHIN THE DENDRO-CALIBRATION CURVE, THE LANDSLIDE OF KOFELS, OTZ VALLEY, AUSTRIA , 1998 .

[59]  James R. Arnold,et al.  In situ10Be-26Al exposure ages at Meteor Crater, Arizona , 1991 .

[60]  M. Kurz,et al.  Examination of surface exposure ages of Antarctic moraines using in situ produced 10Be and 26Al , 1991 .

[61]  H. Craig,et al.  Cosmic-ray-produced neon and helium in the summit lavas of Maui , 1987, Nature.

[62]  L. Jackson,et al.  Cosmogenic 36Cl dating of the maximum limit of the Laurentide Ice Sheet in southwestern Alberta , 1999 .

[63]  A. P. Wolfe,et al.  The Goldilocks dilemma: big ice, little ice, or “just-right” ice in the Eastern Canadian Arctic ☆ , 2002 .

[64]  A. L. Smith,et al.  Dating buried sediments using radioactive decay and muogenic production of 26Al and 10Be , 2000 .

[65]  A. P. Wolfe,et al.  Wisconsinan refugia and the glacial history of eastern Baffin Island, Arctic Canada: Coupled evidence from cosmogenic isotopes and lake sediments , 1998 .

[66]  T. Staudacher,et al.  Ages of the second caldera of Piton de la Fournaise volcano (Réunion) determined by cosmic ray produced3He and21Ne , 1993 .

[67]  J. Klein,et al.  Quaternary erosion and cosmic-ray-exposure history derived from 10Be and 26Al produced in situ—An example from Pajarito plateau, Valles caldera region , 1993 .

[68]  M. Kurz,et al.  Physical volcanology and structural development of Sierra Negra volcano, Isabela Island, Galápagos archipelago , 1995 .

[69]  M. Strecker,et al.  Neotectonics and catastrophic failure of mountain fronts in the southern intra-Andean Puna Plateau, Argentina , 2001 .

[70]  M. Caffee,et al.  26Al and 10Be dating of late pleistocene and holocene fill terraces: a record of fluvial deposition and incision, Colorado front range , 2002 .

[71]  J. Jackson,et al.  Fault growth and landscape development rates in Otago, New Zealand, using in situ cosmogenic 10Be , 2002 .

[72]  C. Riebe,et al.  Minimal climatic control on erosion rates in the Sierra Nevada, California , 2001 .

[73]  R. Hindmarsh,et al.  Sublimation of ice through sediment in beacon valley, antarctica , 1998 .

[74]  J. Harbor,et al.  A relict landscape in the centre of Fennoscandian glaciation: cosmogenic radionuclide evidence of tors preserved through multiple glacial cycles , 2002 .

[75]  D. Lal,et al.  Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models , 1991 .

[76]  G. Burr,et al.  Measurements of Cosmogenic 14C Produced by Spallation in High-Altitude Rocks , 1992, Radiocarbon.

[77]  H. Philip,et al.  Slip rates along active faults estimated with cosmic-ray–exposure dates: Application to the Bogd fault, Gobi-Altaï, Mongolia , 1995 .

[78]  C. Riebe,et al.  Erosional equilibrium and disequilibrium in the Sierra Nevada, inferred from cosmogenic 26Al and 10Be in alluvial sediment , 2000 .

[79]  T. Dunai Reply to comment on ‘Scaling factors for production rates of in situ produced cosmogenic nuclides: a critical reevaluation’ by Darin Desilets, Marek Zreda and Nathaniel Lifton , 2001 .

[80]  G. Denton,et al.  Moraine Exposure Dates Imply Synchronous Younger Dryas Glacier Advances in the European Alps and in the Southern Alps of New Zealand , 1999 .

[81]  Robert H. Webb,et al.  Displacement rates on the Toroweap and Hurricane faults: implications for Quaternary downcutting in the Grand Canyon, Arizona , 2001 .

[82]  G. Ashley,et al.  Exposure age and erosional history of an upland planation surface in the US Atlantic Piedmont. , 2000 .

[83]  M. Sharma,et al.  Cosmogenic radionuclide dating of glacial landforms in the Lahul Himalaya, northern India: defining the timing of Late Quaternary glaciation , 2001 .

[84]  J. Kirchner,et al.  QUATERNARY DOWNCUTTING RATE OF THE NEW RIVER, VIRGINIA, MEASURED FROM DIFFERENTIAL DECAY OF COSMOGENIC 26AL AND 10BE IN CAVE-DEPOSITED ALLUVIUM , 1997 .

[85]  K. Nishiizumi,et al.  In situ cosmogenic 3H, 14C, and 10Be for determining the net accumulation and ablation rates of ice sheets , 1987 .

[86]  M. Caffee,et al.  Late Pleistocene Cosmogenic 36Cl Glacial Chronology of the Southwestern Ahklun Mountains, Alaska , 2001, Quaternary Research.

[87]  E. Evenson,et al.  Extensive Boulder Erosion Resulting from a Range Fire on the Type-Pinedale Moraines, Fremont Lake, Wyoming , 1994, Quaternary Research.

[88]  P. Kubik,et al.  Production of selected cosmogenic radionuclides by muons 1. Fast muons , 2002 .

[89]  M. Caffee,et al.  Glacier readvance during the late glacial (Younger Dryas?) in the Ahklun Mountains, southwestern Alaska , 2002 .

[90]  Nicholas Brozovic,et al.  Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas , 1996, Nature.

[91]  Jeffrey A. Dunne,et al.  Scaling factors for the rates of production of cosmogenic nuclides for geometric shielding and attenuation at depth on sloped surfaces , 1999 .

[92]  T. Cerling Dating Geomorphologic Surfaces Using Cosmogenic 3He , 1990, Quaternary Research.

[93]  H. Loosli A dating method with39Ar , 1983 .

[94]  R. Wieler,et al.  Correction of in situ cosmogenic nuclide production rates for geomagnetic field intensity variations during the past 800,000 years , 2001 .

[95]  Revealing histories of exposure using in situ produced (super 26) Al and (super 10) Be in Libyan Desert glass. , 1986 .

[96]  M. Kurz,et al.  Surface-Exposure Chronology Using in Situ Cosmogenic 3He in Antarctic Quartz Sandstone Boulders , 1993, Quaternary Research.

[97]  M. Plummer,et al.  Chronology for Fluctuations in Late Pleistocene Sierra Nevada Glaciers and Lakes , 1996, Science.

[98]  M. Caffee,et al.  Cosmogenic exposure and erosion history of Australian bedrock landforms , 2002 .

[99]  M. Caffee,et al.  Timing of multiple late Quaternary glaciations in the Hunza Valley, Karakoram Mountains, northern Pakistan: Defined by cosmogenic radionuclide dating of moraines , 2002 .

[100]  M. Caffee,et al.  Cosmogenic 10Be and 26Al ages for the Last Glacial Maximum, eastern Baffin Island, Arctic Canada , 2000 .

[101]  D. Bourlès,et al.  Evidence for muon‐induced production of 10Be in near‐surface rocks from the Congo , 1995 .

[102]  F. Phillips,et al.  The Accumulation of Cosmogenic Chlorine-36 in Rocks: a Method for Surface Exposure Dating , 1986, Science.

[103]  J. Hutchinson,et al.  Hillslope Form and Process , 1973 .

[104]  John O. Stone,et al.  Cosmogenic Cl-36 dating of postglacial landsliding at The Storr, Isle of Skye, Scotland , 1998 .

[105]  M. Kurz,et al.  Cosmogenic nuclide exposure ages and glacial history of late Quaternary Ross Sea drift in McMurdo Sound, Antarctica , 1995 .

[106]  L. James,et al.  Late Pleistocene Glaciations in the Northwestern Sierra Nevada, California , 2002, Quaternary Research.

[107]  Raymond Davis,et al.  CHLORINE‐36 IN NATURE , 1955 .

[108]  J. Wijbrans,et al.  Long-term cosmogenic 3He production rates (152 ka–1.35 Ma) from 40Ar/39Ar dated basalt flows at 29°N latitude , 2000 .

[109]  P. Bierman,et al.  Rates of Sediment Supply to Arroyos from Upland Erosion Determined Using in Situ Produced Cosmogenic 10Be and 26Al , 2001, Quaternary Research.

[110]  R. Middleton,et al.  Beryllium-10 Dating of the Duration and Retreat of the Last Pinedale Glacial Sequence , 1995, Science.

[111]  A. Gillespie,et al.  Range fires: A significant factor in exposure-age determination and geomorphic surface evolution , 1991 .

[112]  William E. Dietrich,et al.  Soil production on a retreating escarpment in southeastern Australia , 2000 .

[113]  B. Burchfiel,et al.  Quaternary Climate Change and the Formation of River Terraces across Growing Anticlines on the North Flank of the Tien Shan, China , 1994, The Journal of Geology.

[114]  H. Synal,et al.  The exposure age of an Egesen moraine at Julier Pass, Switzerland measured with the cosmogenic radionuclides Be-10, Al-26 and Cl-36 , 1996 .

[115]  T. Staudacher,et al.  Cosmogenic neon and helium at Réunion: measurement of erosion rate , 1993 .

[116]  M. Kurz,et al.  Chronology of Taylor Glacier Advances in Arena Valley, Antarctica, Using in Situ Cosmogenic 3He and 10Be , 1993, Quaternary Research.

[117]  K. Nishiizumi,et al.  Production of 10Be and 26Al by cosmic rays in terrestrial quartz in situ and implications for erosion rates , 1986, Nature.

[118]  T. Cerling,et al.  Cosmogenic 14C in carbonate rocks , 1999 .

[119]  M. Kurz,et al.  Constraints on age, erosion, and uplift of Neogene glacial deposits in the Transantarctic Mountains determined from in situ cosmogenic 10Be and 26Al , 1995 .

[120]  D. Donahue,et al.  Polar ice ablation rates measured using in situ cosmogenic 14C , 1990, Nature.

[121]  R. Anderson,et al.  Use of a new 10Be and 26Al inventory method to date marine terraces, Santa Cruz, California, USA , 2001 .

[122]  C. Riebe,et al.  Strong tectonic and weak climatic control of long-term chemical weathering rates , 2001 .

[123]  P. Clark,et al.  Cosmogenic 3He and 10Be chronologies of the late Pinedale northern Yellowstone ice cap, Montana, USA , 2001 .

[124]  N. Hovius,et al.  Large-scale erosion rates from in situ-produced cosmogenic nuclides in European river sediments , 2001 .

[125]  G. Woldegabriel,et al.  Dating of Quaternary basalts using the cosmogenic 3He and 14C methods with implications for excess 40Ar , 1994 .

[126]  M. Caffee,et al.  A note on the extent of glaciation throughout the Himalaya during the global Last Glacial Maximum , 2002 .

[127]  M. Zreda,et al.  Cosmogenic 36Cl dating of a young basaltic eruption complex, Lathrop Wells, Nevada , 1993 .

[128]  C. Riebe,et al.  Modulation of erosion on steep granitic slopes by boulder armoring, as revealed by cosmogenic 26Al and 10Be , 2001 .

[129]  M. Summerfield,et al.  Cosmogenic isotope data support previous evidence of extremely low rates of denudation in the Dry Valleys region, southern Victoria Land, Antarctica , 1999, Geological Society, London, Special Publications.

[130]  D. Lal,et al.  Tracing quartz through the environment , 1985 .

[131]  R. Anderson,et al.  Estimates of the rate of regolith production using and from an alpine hillslope , 1999 .

[132]  C. Henderson Radiogenic Isotope Geology , 1997 .

[133]  Zreda,et al.  Ages of prehistoric earthquakes revealed by cosmogenic chlorine-36 in a bedrock fault scarp at hebgen lake , 1998, Science.

[134]  M. Summerfield,et al.  Quantifying passive margin denudation and landscape development using a combined fission-track thermochronology and cosmogenic isotope analysis approach , 2000 .

[135]  S. Lehman,et al.  Cosmogenic nuclide exposure ages along a vertical transect in western Norway: Implications for the height of the Fennoscandian ice sheet , 1996 .

[136]  P. Bierman,et al.  Improving in Situ Cosmogenic Chronometers , 1995, Quaternary Research.

[137]  S. Vanya,et al.  Numerical simulation of in situ production of cosmogenic nuclides: Effects of irradiation geometry , 2000 .

[138]  M. Caffee,et al.  Using 10Be and 26Al to determine sediment generation rates and identify sediment source areas in an arid region drainage basin , 2002 .

[139]  L. K. Fifield,et al.  Limestone erosion measurements with cosmogenic chlorine-36 in calcite — preliminary results from Australia , 1994 .

[140]  M. Caffee,et al.  Displacement history of a limestone normal fault scarp, northern Israel, from cosmogenic 36Cl , 2001 .

[141]  J. Stone,et al.  Cosmogenic Chlorine-36 Production in Calcite by Muons , 1998 .

[142]  F. Phillips,et al.  Accelerator Mass Spectrometry for Measurement of Long-Lived Radioisotopes , 1987, Science.

[143]  M. Kurz,et al.  Diffusion of cosmogenic3He in olivine and quartz: implications for surface exposure dating , 1991 .

[144]  P. Bierman,et al.  ESTIMATING RATES OF DENUDATION USING COSMOGENIC ISOTOPE ABUNDANCES IN SEDIMENT , 1996 .

[145]  M. Caffee,et al.  Slow Rates of Rock Surface Erosion and Sediment Production across the Namib Desert and Escarpment, Southern Africa , 2001 .

[146]  M. Zreda,et al.  Comment on ‘Scaling factors for production rates of in situ produced cosmogenic nuclides: a critical reevaluation’ by Tibor J. Dunai , 2001 .

[147]  T. Staudacher,et al.  Cosmogenic neon in ultramafic nodules from Asia and in quartzite from Antarctica , 1991 .

[148]  M. Caffee,et al.  Slip rates on the Fish Springs fault, Owens Valley, California, deduced from cosmogenic 10Be and 26Al and soil development on fan surfaces , 2001 .

[149]  J. Stone Air pressure and cosmogenic isotope production , 2000 .

[150]  R. Anderson,et al.  Explicit treatment of inheritance in dating depositional surfaces using in situ 10Be and 26Al , 1996 .

[151]  M. Kurz,et al.  Effective attenuation lengths of cosmic rays producing 10Be AND 26Al in quartz: Implications for exposure age dating , 1992 .

[152]  R. Webb,et al.  Cosmogenic 3He ages and frequency of late Holocene debris flows from Prospect Canyon, Grand Canyon, USA , 1999 .

[153]  J. Tison,et al.  Preservation of Miocene glacier ice in East Antarctica , 1995, Nature.

[154]  P. Mayewski,et al.  Measurements of cosmic-ray-produced 14C in firn and ice from antarctica , 1994 .

[155]  D. Bourlès,et al.  African laterite dynamics using in situ-produced 10Be , 1998 .

[156]  M. Caffee,et al.  Uniform postglacial slip-rate along the central 600 km of the Kunlun Fault (Tibet), from 26Al, 10Be, and 14C dating of riser offsets, and climatic origin of the regional morphology , 2002 .

[157]  R. Wieler,et al.  Cosmogenic noble gas studies in the oldest landscape on earth: surface exposure ages of the Dry Valleys, Antarctica , 1999 .

[158]  D. Lal IN SITU-PRODUCED COSMOGENIC ISOTOPES IN TERRESTRIAL ROCKS , 1988 .

[159]  H. Craig,et al.  Cosmogenic 3He production rates from 39°N to 46°N latitude, western USA and France , 1994 .

[160]  E. Nolte,et al.  Cosmogenic in situ production of radionuclides: Exposure ages and erosion rates , 2000 .

[161]  K. Nishiizumi,et al.  Cosmic-ray-produced 21Ne in terrestrial quartz: the neon inventory of Sierra Nevada quartz separates , 1994 .

[162]  J. Avouac,et al.  Slip rate on the Dead Sea transform fault in northern Araba valley (Jordan) , 2000 .

[163]  S. Wells,et al.  Cosmogenic 3He surface-exposure dating of stone pavements: Implications for landscape evolution in deserts , 1995 .

[164]  James W. Kirchner,et al.  Spatially Averaged Long-Term Erosion Rates Measured from in Situ-Produced Cosmogenic Nuclides in Alluvial Sediment , 1996, The Journal of Geology.

[165]  M. Caffee,et al.  Sediment yield exceeds sediment production in arid region drainage basins , 2000 .

[166]  M. Zreda,et al.  Cosmogenic Chlorine-36 Chronology for Glacial Deposits at Bloody Canyon, Eastern Sierra Nevada , 1990, Science.

[167]  M. Strecker,et al.  Tephrochronologic Constraints on Temporal Distribution of Large Landslides in Northwest Argentina , 2000, The Journal of Geology.

[168]  R. Anderson,et al.  EROSION RATES OF ALPINE BEDROCK SUMMIT SURFACES DEDUCED FROM IN SITU 10BE AND 26AL , 1997 .

[169]  F. Phillips,et al.  Terrestrial in situ cosmogenic nuclides: theory and application , 2001 .

[170]  M. Zreda,et al.  Unblocking of the Nares Strait by Greenland and Ellesmere ice-sheet retreat 10,000 years ago , 1999, Nature.

[171]  H. Craig,et al.  Cosmogenic10Be,26Al, and3He in olivine from Maui lavas , 1990 .

[172]  S. Ivy‐Ochs,et al.  Production of selected cosmogenic radionuclides by muons: 2. Capture of negative muons , 2002 .

[173]  A. Heimsath,et al.  Creeping soil , 2002 .

[174]  J. G. King,et al.  Mountain erosion over 10 yr, 10 k.y., and 10 m.y. time scales , 2001 .

[175]  J. Noller,et al.  Quaternary geochronology : methods and applications , 2000 .

[176]  A. Heimsath,et al.  Impulsive alluviation during early Holocene strengthened monsoons, central Nepal Himalaya , 2002 .

[177]  R. Stallard,et al.  Denudation rates determined from the accumulation of in situ-produced 10Be in the luquillo experimental forest, Puerto Rico , 1995 .

[178]  J. Harbor,et al.  Landscape preservation under Fennoscandian ice sheets determined from in situ produced 10Be and 26Al , 2002 .

[179]  R. Giegengack,et al.  Revealing Histories of Exposure Using In Situ Produced 26Al and 10Be in Libyan Desert Glass , 1986, Radiocarbon.

[180]  D. Granger,et al.  Dating sediment burial with in situ-produced cosmogenic nuclides: theory, techniques, and limitations , 2001 .

[181]  B. Burchfiel,et al.  Estimation of slip rates in the southern Tien Shan using cosmic ray exposure dates of abandoned alluvial fans , 1998 .

[182]  R. Wieler,et al.  The oldest ice on Earth in Beacon Valley, Antarctica: new evidence from surface exposure dating , 2000 .

[183]  Lewis A. Owen,et al.  Natural and human-induced landsliding in the Garhwal Himalaya of northern India , 2001 .

[184]  B. Marty,et al.  Cosmogenic 10Be and 3He accumulation in Pleistocene beach terraces in Death Valley, California, U.S.A.: Implications for cosmic-ray exposure dating of young surfaces in hot climates , 1995 .

[185]  O. Chadwick,et al.  Cosmogenic 36Cl and 10Be ages of Quaternary glacial and fluvial deposits of the Wind River Range, Wyoming , 1997 .

[186]  K. Nishiizumi,et al.  Cosmogenic production of 7Be and 10Be in water targets , 1996 .

[187]  M. Summerfield,et al.  Quantifying denudation rates on inselbergs in the central Namib Desert using in situ–produced cosmogenic 10Be and 26Al , 1999 .

[188]  Timothy T. Barrows,et al.  Late Pleistocene Glaciation of the Kosciuszko Massif, Snowy Mountains, Australia , 2001, Quaternary Research.

[189]  C. Ballantyne,et al.  Exposure dating and validation of periglacial weathering limits, northwest Scotland , 1998 .

[190]  R. Poreda,et al.  Cosmogenic neon in recent lavas from the western United States , 1992 .

[191]  M. Zreda,et al.  Chronology of Quaternary glaciations in East Africa , 2000 .

[192]  J. Klein,et al.  Modifications of an FN tandem for quantitative 10Be measurement , 1982 .

[193]  W. Dietrich,et al.  Late Quaternary erosion in southeastern Australia: a field example using cosmogenic nuclides , 2001 .

[194]  G. Miller,et al.  Low-gradient outlet glaciers (ice streams?) drained the Laurentide ice sheet , 2001 .

[195]  Fred M. Phillips,et al.  Age and geomorphic history of Meteor Crater, Arizona, from cosmogenic 36Cl and 14C in rock varnish , 1991 .

[196]  Ellen Wohl,et al.  Rivers Over Rock: Fluvial Processes in Bedrock Channels , 1998 .

[197]  W. Phillips,et al.  Studies of the production rate of cosmic-ray produced 14C in rock surfaces , 1994 .

[198]  W. Dietrich,et al.  Cosmetic Isotope Analyses Applied to River Longitudinal Profile Evolution: Problems and Interpretations , 1997 .

[199]  T. Dunai Influence of secular variation of the geomagnetic field on production rates of in situ produced cosmogenic nuclides , 2001 .

[200]  M. Zreda,et al.  Insights into alpine moraine development from cosmogenic 36Cl buildup dating , 1995 .

[201]  De Boelelaan,et al.  Scaling factors for production rates of in situ produced cosmogenic nuclides : a critical reevaluation , 2000 .

[202]  R. Anderson,et al.  Cosmogenic dating of fluvial terraces, Fremont River, Utah , 1997 .

[203]  M. Kurz,et al.  Cosmic ray exposure dating with in situ produced cosmogenic 3He: Results from young Hawaiian lava flows , 1990 .

[204]  Jon Harbor,et al.  The use of in-situ produced cosmogenic radionuclides in glaciology and glacial geomorphology , 1999, Annals of Glaciology.

[205]  R. Middleton,et al.  Precise cosmogenic 10Be measurements in western North America: Support for a global Younger Dryas cooling event , 1995 .

[206]  P. Bierman,et al.  10Be and 26Al Evidence for Exceptionally Low Rates of Australian Bedrock Erosion and the Likely Existence of Pre-Pleistocene Landscapes , 1995, Quaternary Research.

[207]  John O. Stone,et al.  Denudation rates for the southern Drakensberg escarpment, SE Africa, derived from in-situ-produced cosmogenic 36C1: initial results , 1999, Journal of the Geological Society.

[208]  O. Chadwick,et al.  Chronology of Pleistocene glacial advances in the central Rocky Mountains , 1997 .

[209]  D. Muraleedharan,et al.  Endocrine influence on protein synthesis in the fatbodies of female red cotton bug,Dysdercus cingulatus Fabr , 1985 .

[210]  M. Summerfield,et al.  Long-term rates of denudation in t he Dry Valleys, Transantarctic Mountains, southern Victoria Land, Antarctica bases on in-situ-produced cosmogenic 21Ne. , 1999 .

[211]  R. Wieler,et al.  The limited influence of glaciations in Tibet on global climate over the past 170 000 yr , 2002 .

[212]  J. Stone,et al.  Terrestrial cosmogenic nuclide methods passing milestones toward paleo‐altimetry , 2001 .

[213]  M. Eppes,et al.  Spatial variability of soils developing on basalt flows in the Potrillo volcanic field, southern New Mexico: prelude to a chronosequence study , 1999 .

[214]  P. Kubik,et al.  21Ne versus 10Be and 26Al exposure ages of fluvial terraces: the influence of crustal Ne in quartz , 2002 .

[215]  J. Southon,et al.  Cosmogenic analysis of glacial terrains in the eastern Canadian Arctic: a test for inherited nuclides and the effectiveness of glacial erosion , 1999, Annals of Glaciology.

[216]  J. Brigham‐Grette,et al.  Evidence for restricted ice extent during the last glacial maximum in the Koryak Mountains of Chukotka, far eastern Russia , 2000 .

[217]  W. Phillips Estimating cumulative soil accumulation rates with in situ-produced cosmogenic nuclide depth profiles , 2000 .

[218]  R. Stallard,et al.  Determination of predevelopment denudation rates of an agricultural watershed (Cayaguás River, Puerto Rico) using in-situ-produced 10Be in river-borne quartz , 1998 .

[219]  D. Lal,et al.  COSMIC RAY PRODUCED RADIOACTIVITY ON THE EARTH. , 1967 .

[220]  W. Dietrich,et al.  The soil production function and landscape equilibrium , 1997, Nature.

[221]  Timothy T. Barrows,et al.  The timing of the Last Glacial Maximum in Australia. , 2002 .

[222]  M. Zreda,et al.  Cosmogenic 36Cl accumulation in unstable landforms: 2. Simulations and measurements on eroding moraines , 1994 .

[223]  J. Quade,et al.  A new extraction technique and production rate estimate for in situ cosmogenic 14C in quartz , 2001 .

[224]  K. Nishiizumi,et al.  Role of in situ cosmogenic nuclides 10be and 26al in the study of diverse geomorphic processes , 1993 .

[225]  H. Craig,et al.  Geomorphology and In-Situ Cosmogenic Isotopes , 1994 .